Win Loot With The Enlightened Raspberry Pi Contest

Have an awesome Raspberry Pi project in mind (or maybe sitting on your bench right now)? Show it off for the Enlightened Raspberry Pi contest and you can score some excellent loot.

The Raspberry Pi has changed the face of experimental computers. These little $35 Linux powered boards can do incredible things. An active community has sprung up around the Pi. With it have come thousands of projects published on the web, in books, and in magazines. Many of the best Raspberry Pi projects are seen right here on Hackaday and published on Hackaday.io, which boasts over 1000 user created Pi powered projects (yes, we counted). Show us how you pull off those projects and you’ll be eligible to win.

Prizes and Judges

One thing we’d like to see more are really well documented projects — showing off everything anyone with an average skill set needs to perform the cool hack themselves. Do that and you’re well on your way to claiming one of eight great prizes! The grand prize winner gets a Pi-top Raspberry Pi laptop. First prize is the new Pi-top Ceed all in one. Second place is a 32×32 RGB Matrix kit. And the list goes on.

Submit your entry as a project on Hackaday.io and use the “Submit Project To…” option on the left sidebar of your project page to add it to the Enlightened Raspberry Pi contest. When entries close on November 9th, the Hackaday Staff will begin judging, bringing in some help to choose the top winners. This help comes in the form of a few VIP judges!

[Alvaro Prieto] is a Firmware/Electrical engineer who works on electronics for work and for fun. He previously worked at TI, Apple, and Planet. You’ve seen him hacking micro quadcopters, and as a presenter at the 2015 Hackaday SuperCon,

[Matt Richardson] is a Product Evangelist for the Raspberry Pi Foundation and the co-author of Getting Started with Raspberry Pi. We’ve seen [Matt] building heads up displays for bicycles, and removing celebrity gossip from our TV’s.

[Ken Shirriff] writes a popular blog (righto.com) on reverse engineering everything from chargers to microprocessors. Ken was formerly a programmer at Google and has a PhD in computer science from UC Berkeley. We’ve covered his microprocessor work as well as his teardowns of knockoff laptop chargers.

It’s All in the Details:

Entries are open now, show us the details that make great Raspberry Pi projects happen! The full rules can be found on the Enlightened Raspberry Pi Contest page. Fire up your soldering irons, warm up your 3D printers, and load up your favorite code editor. It’s time to start hacking!

enlightenpi

Choosing A ‘Scope: Examining Bandwidth

A few weeks ago I asked the Hackaday community for some help and advice in buying a new budget oscilloscope. Thank you very much to those of you who responded both here online and in person among my friends closer to home. I followed the overwhelming trend in the advice I received, and bought myself a Rigol DS1054z, an instrument with which I am very happy. It’s a nominally a 50 MHz scope, but there’s a software hack that can bring it up to 100 MHz. How fast can it go?

My trusty Cossor, its 2 MHz bandwidth as yet unverified.
My trusty Cossor, its 2 MHz bandwidth as yet unverified.

This question became a mini scope-shootout after a conversation with my Hackaday colleague [Elliot] about measuring oscilloscope bandwidth, and then my fellow Oxford Hackspace members producing more than one scope for comparison. You know who you are, thank you. I found myself with ready access to several roughly equivalent models and one very high-end one in specification terms representing different strata of test equipment manufacture, and with the means to examine their performance.

Continue reading “Choosing A ‘Scope: Examining Bandwidth”

The New York Public Library Built A Reading Railroad

What’s the best way to quickly move books from a vast underground archive to the library patrons who want to read them? For the New York Public Library (NYPL), it used to be an elaborate conveyor belt system. But the trouble with those is that the books will fall right off of them on a vertical run. What the NYPL’s gargantuan flagship library on 5th Avenue needed was a train to shuttle the books around. This week, as the majestic Rose Main Reading Room reopens after renovation, the train will leave the station.

From January to August 2016, workers retrofitted the existing conveyor belt infrastructure to support 950 feet of shiny, winding track. ‘Train’ is a bit of a misnomer because the cars travel singly. The double-track system traverses eight floors of library from the underground archive to any of the 11 designated stops. There are 24 book cars at present. Each one can hold about 30 pounds of books and travels at about 75 feet per minute.

In order to move between floors economically, some sections of track are completely vertical. How do the books stay in there? Simple—the cargo hold pivots on a gimbal. Sensors along the track make it easy to keep tabs on the cars, which are separated by a 15-second buffer to avoid collisions and mishaps. Click past the break for a sped-up demonstration. For you purists out there, we’ve also embedded the full, silent, real-time version that clocks in at nearly five minutes.

We like all kinds of trains around here, from the subterranean to the scientifically derailed.

Continue reading “The New York Public Library Built A Reading Railroad”

Transmitting Analog TV, Digitally

If you want to really understand a technology, and if you’re like us, you’ll need to re-build it yourself. It’s one thing to say that you understand (analog) broadcast TV by reading up on Wikipedia, or even by looking at scope traces. But when you’ve written a flow graph that successfully transmits a test image to a normal TV using just a software-defined radio, you can pretty easily say that you’ve mastered the topic.

9944491474271463115_thumbnail[Marble] wrote his flow for PAL, but it should be fairly easy to modify it to work with NTSC if you’re living in the US or Japan. Sending black and white is “easy” but to transmit a full color image, you’ll need to read up on color spaces. Check out [marble]’s project log.

Hackaday has another hacker who’s interested in broadcasting to dinosaur TVs: [CNLohr]. Check out his virtuoso builds for the ATtiny and for the ESP8266.

(Yes, the headline image is one of his earlier trials with black and white from Wikipedia — we just like the look.)

Hackaday Prize Entry: Making A Book Reader That Can Survive Kindergarten

[atomicthomas] is a dedicated teacher. One only has to look at the work he’s been putting into book readers for for the past sixteen years. With hardware like the Pi Zero threatening cheap computers just over the supply chain horizon, he’s begun to set his sights higher.

It all started with headphones and audio tapes. For all of us who got to use tapes and school headphones, we know the flaws with this plan. Nothing lasted the sticky and violent hands of children for long. When video recordings of book became available, DVD players suffered similar fates.

So, he began to rip his tapes and DVDs to his computer. However, the mouse has a warning about small parts on it for a reason, and didn’t last long either. So, he built a computer with arcade buttons and a Raspberry Pi. This one ran a heavily simplified version of a media manager and worked well. Even the special needs children had no problem navigating. A second exploration with an iMac and a Nintendo controller worked even better. Apparently all five year olds instinctively understand how to use a Nintendo controller.

Using the user test data, in his most recent iteration he’s working on a sub-twenty-dollar reading computer in a Nintendo controller. It’s not the most technically in depth hack we’ve ever covered, but it certainly ranks up there for harsh environments.

Hello 3D Printed Dolly

[Ivan] likes to take time lapse videos. Using his 3D printer and a stepper motor he fashioned a rig that allows him to control the camera moving any direction on a smooth floor.

The dolly has a tripod-compatible mounting plate and scooter wheels. An Arduino runs the thing and a cell phone battery provides power. A pot sets the speed and [Ivan] provides code for both a linear pot, which he suggests, and for a logarithmic pot, which he had on hand. You can see a video of the results below.

Continue reading “Hello 3D Printed Dolly”

The Art Of Making A Nixie Tube

Three years ago we covered [Dalibor Farnby]’s adventures in making his own Nixie tubes. Back then it was just a hobby, a kind of exploration into the past. He didn’t stop, and it soon became his primary occupation. In this video he shows the striking process of making one of his Nixie tubes.

Each of his tubes get an astounding amount of love and attention. An evolution of the process he has been working on for five years now. The video starts with the cleaning process for the newly etched metal parts. Each one is washed and dried before being taken for storage inside a clean hood. The metal parts are carefully hand bent. Little ceramic pins are carefully glued and bonded. These are used to hold the numbers apart from each other. The assembly is spot welded together.

In a separate cut work begins on the glass. The first part to make is the bottom which holds the wire leads. These are joined and then annealed. Inspection is performed on a polariscope and a leak detector before they are set aside for assembly. Back to the workbench the leads are spot welded to the frame holding the numbers.

It continues with amazing attention to detail. So much effort goes into each step. In the end a very beautiful nixie tube sits on a test rack, working through enough cycles to be certified ready for sale. The numbers crisp, clear, and beautiful. Great work keeping this loved part of history alive in the modern age.

Continue reading “The Art Of Making A Nixie Tube”