World’s Smallest LED Blinky

[Mike Harrison] is known for incredibly tiny soldering. Now he’s claiming a “world’s smallest” in the form of a stand-alone LED blinker, and we think he’s got the record.

He brought it along with him to Friday’s Beagleboard Bring-a-Hack, and we got a close look at the diminutive assembly. The project was dreamed up when [Mike] saw an announcement from Seiko about a new supercapacitor in a tiny package (likely the CPH3225A giving the blinky a footprint of 3.2 x 2.5 mm). With that in hand he added a PIC 10f322 microcontroller in a SOT23 package, an 0603 smoothing capacitor, and an SMD LED.

With such a tiny package, the trickiest part is figuring out how to charge that supercap. [Mike] used a drill and hand files to make a square hole in a CR2032 battery holder to serve as a jig. The bottom of the supercap rests against the battery as a pogo pin makes the second connection to a terminal on the side of his assembly. It charges quickly and will happily blink away for about six minutes after charging.

Mike set out to make two of these, but dropped the second supercap when at his workbench to be forever lost in the detritus common to every electronics workshop. When he first pulled it out at the meetup we were on a rooftop terrace and we were more than a bit concerned that this would just blow away. How do you begin to fabricate such a tiny assembly? He used UV cured epoxy to glue them together first, then somehow completed the soldering by hand!

Continue reading “World’s Smallest LED Blinky”

The Tiniest Computer Vision Platform Just Got Better

The future, if you believe the ad copy, is a world filled with cameras backed by intelligence, neural nets, and computer vision. Despite the hype, this may actually turn out to be true: drones are getting intelligent cameras, self-driving cars are loaded with them, and in any event it makes a great toy.

That’s what makes this Kickstarter so exciting. It’s a camera module, yes, but there are also some smarts behind it. The OpenMV is a MicroPython-powered machine vision camera that gives your project the power of computer vision without the need to haul a laptop or GPU along for the ride.

The OpenMV actually got its start as a Hackaday Prize entry focused on one simple idea. There are cheap camera modules everywhere, so why not attach a processor to that camera that allows for on-board image processing? The first version of the OpenMV could do face detection at 25 fps, color detection at more than 30 fps, and became the basis for hundreds of different robots loaded up with computer vision.

This crowdfunding campaign is financing the latest version of the OpenMV camera, and there are a lot of changes. The camera module is now removable, meaning the OpenMV now supports global shutter and thermal vision in addition to the usual color/rolling shutter sensor. Since this camera has a faster microcontroller, this latest version can support multi-blob color tracking at 80 fps. With the addition of a FLIR Lepton sensor, this camera does thermal sensing, and thanks to a new library, the OpenMV also does number detection with the help of neural networks.

We’ve seen a lot of builds using the OpenMV camera, and it’s getting ot the point where you can’t compete in an autonomous car race without this hardware. This new version has all the bells and whistles, making it one of the best ways we’ve seen to add computer vision to any hardware project.

Hackaday Links Column Banner

Hackaday Links: September 23, 2018

In the spirit of Nintendo’s NES mini and Super NES mini, Sony is releasing a tiny version of the Playstation. It’s a hundred bucks in December and it comes with Final Fantasy VII, what more do you want? While that’s marginally cool, check out the forums and comments of gaming blogs for some real entertainment — those damn kids won’t get off my lawn and are complaining the included controllers don’t have analog sticks.

This man has solved the range problem for electric cars. He hacked a Prius to run off the overhead wires for San Francisco’s Muni system. Yes, if you want something amazing, here it is. The pantograph/pole/whatever it’s called was acquired ‘somehow’, with the implication that it was stolen. The overhead lines are 600 V, and a Prius’ battery pack is usually 273 V; apparently he “uses up the excess power on a whole lot of resistors, full-time headlights, and a kick-ass stereo system.”. Dear lord, we need a real technical write-up for this one.

get on my level

Humanity’s most impressive accomplishment to date is Twitch Plays Pokemon. This was a cooperative game of Pokemon, with thousands of people mashing buttons. Everyone (eventually) beat the Final Four, but the most impressive part was the Power Plant. We made it through the Power Plant, and we got Zapdos. I was there. It was incredible. Twitch Plays Pokemon has been reborn and rebranded several times, but this one might be good: Twitch Programs a Commodore 64. It’s a (virtual) C64 hooked up to Twitch. If there’s one person watching the channel, you can slowly type out a BASIC program one… character… at… a… time. If there’s more than one person watching, the entire ordeal devolves into the horrors of a democracy, but you might be able to get something done. Have fun.

Send Smooches Over Skype With The Kiss Interface

This project of [Nathan]’s certainly has a playful straightforwardness about it. His Skype ‘Kiss’ Interface has a simple job: to try to create a more intuitive way to express affection within the limits of using Skype. It all came about from a long distance relationship for which the chat program was the main means of communicating. Seeking a more intuitive and personal means of expressing some basic affection, [Nathan] created a capacitive touch sensor that, when touched with the lips, sends the key combination for either a kissy face emoji or the red lips emoji, depending on the duration.

Capacitive touch sensing allows for triggering the sensor without actually physically touching one’s lips to the electrodes, which [Nathan] did by putting a clear plastic layer over the PCB traces. His board uses an STM32 microcontroller with software handling the USB HID and STM’s TSC (Touch Sensing Controller) functionality. As a result, the board has few components and a simple interface, which was in keeping with the goal of rejecting feature creep and focusing on a simple task.

Clearly the unit works; but how well does it actually fulfill its intended purpose? We don’t know that yet, but we do know that [Nathan] seems to have everything he needs in order to find out. Either way, it’s a fun project that definitely fits the spirit of the Human-Computer Interface Challenge of The Hackaday Prize.

This Pinball Game Doesn’t Come In A Box… It Is The Box

Pinball still has that bit of magic that makes it stand out from first person shooters or those screen mashers eating up your time on the bus. The secret sauce is that sense of movement and feedback, and the loss of control as the ball makes its way through the play field under the power of gravity. Of course the real problem is finding a pinball machine. Pinbox 3000 is swooping in to fix that in a creative way. It’s a cardboard pinball machine that you build and decorate yourself.

We ran into them at Maker Faire New York over the weekend and the booth was packed with kids and adults all mashing flippers to keep a marble in play. The kit comes as flat-pack cardboard already scored and printed with guides for assembly which takes about an hour.

The design is quite clever, with materials limited to just cardboard, rubber bands, and a few plastic rivets. Both the plunger that launches the pinball and the flippers are surprisingly robust. They stand up to a lot of force and from the models on display it seems the friction points of cardboard-on-cardboard are the issue, rather than mechanisms buckling under the force exerted by the player.

When first assembled the playfield is blank. That didn’t stop the fun for this set of kits stacked back to back for player vs. player action. There’s a hole at the top of playfields which makes this feel a bit like playing Pong in real life. However, where the kit really shines is in customizing your own game. In effect you’re setting up the most creative marble run you can imagine. This task was well demonstrated with cardboard, molded plastic packaging (which is normally landfill) cleverly placed, plus some noisemakers and lighting effects. The company has been working to gather up inspiration and examples for building out the machines. We love the multiple layers of engagement rolled into Pinbox, from building the stock kit, to fleshing out a playfield, and even to adding your own electronics for things like audio effects.

Check out the video below to see the fun being had at the Maker Faire booth.

Continue reading “This Pinball Game Doesn’t Come In A Box… It Is The Box”

Using An FPGA To Navigate China’s Railroads

If you’re headed over to mainland China as a tourist, it’s possible to get to most of the country by rail. China is huge though, about the same size as the United States and more than twice the size of the European Union. Traveling that much area isn’t particularly easy. There are over 300 train terminals in China, and finding the quickest route somewhere is not obvious at all. This is an engineering challenge waiting to be solve, and luckily some of the students at Cornell Engineering have taken a stab at efficiently navigating China’s rail system using an FPGA.

The FPGA runs an algorithm for finding the shortest route between two points, called Dijkstra’s algorithm. With so many nodes this can get cumbersome for a computer to calculate, but the parallel processing of a dedicated FPGA speeds up the process significantly. The FPGA also includes something called a “hard processor system“, or HPS. This is not a soft-core, but dedicated computing hardware in the form of an ARM Cortex-A9. Testing showed that utilizing both the HPS and the FPGA can speed up the computation by up to ten times over a microcontroller alone.

This project goes into extreme detail on the methodology and the background of the math and coding involved, and is definitely worth a read if you’re interested in FPGAs or traveling salesman-esque problems. FPGAs aren’t the only dedicated hardware you can use to solve these kinds of problems though, if you have a big enough backpack while you’re traveling around China you could also use a different kind of computer.

Continue reading “Using An FPGA To Navigate China’s Railroads”

Greasing Robot Hands: Variable Friction Makes Robo-Mitts More Like Our Own

Unless you are in the fields of robotics or prosthetics, you likely take for granted the fine motor skills our hands have. Picking up and using a pen is no small feat for a robot which doesn’t have a dedicated pen-grabbing apparatus. Holding a mobile phone with the same gripper is equally daunting, not to mention moving that phone around once it has been grasped. Part of the wonder of our hands is the shape and texture which allows pens and phones to slide around at one moment, and hold fast the next moment. Yale’s Grab Lab has built a gripper which starts to solve that problem by changing the friction of the manipulators.

A spring-loaded set of slats with a low-friction surface allow a held object to move freely, but when more pressure is exerted by the robot, the slats retract and a high-friction surface contacts the object. This is similar to our fingers with their round surfaces. When we brush our hands over something lightly, they graze the surface but when we hold tight, our soft flesh meets the surface of the object and we can hold tightly. The Grab Lab is doing a great job demonstrating the solution and taking steps to more capable robots. All hail Skynet.

We have no shortage of gripper designs to choose from, including pneumatic silicone and one that conforms to an object’s surface, similar to our hands.

Continue reading “Greasing Robot Hands: Variable Friction Makes Robo-Mitts More Like Our Own”