Regenerative Medicine: The Promise Of Undoing The Ravages Of Time

In many ways, the human body is like any other machine in that it requires constant refueling and maintenance to keep functioning. Much of this happens without our intervention beyond us selecting what to eat that day. There are however times when due to an accident, physical illness or aging the automatic repair mechanisms of our body become overwhelmed, fail to do their task correctly, or outright fall short in repairing damage.

Most of us know that lizards can regrow tails, some starfish regenerate into as many new starfish as the pieces which they were chopped into, and axolotl can regenerate limbs and even parts of their brain. Yet humans too have an amazing regenerating ability, although for us it is mostly contained within the liver, which can regenerate even when three-quarters are removed.

In the field of regenerative medicine, the goal is to either induce regeneration in damaged tissues, or to replace damaged organs and tissues with externally grown ones, using the patient’s own genetic material. This could offer us a future in which replacement organs are always available at demand, and many types of injuries are no longer permanent, including paralysis. Continue reading “Regenerative Medicine: The Promise Of Undoing The Ravages Of Time”

An Oil Diffusion Vacuum Pump From Thrift Store Junk

It seems like creating a vacuum should be a pretty easy job, but it turns out that sucking all the air out of something is harder than it seems. A cheap vacuum pump will get you part of the way there, but to really pull a hard vacuum, you need an oil diffusion pump that costs multiple tens of thousands of dollars.

Or, you need a bunch of thrift store junk, a TIG welder, and a can of WD-40. At least that’s what [Lucas] put into his homebrew oil diffusion pump. The idea of such a contraption is to vaporize oil in a chamber such that the oil droplets entrain any remaining gas molecules toward an exhaust port. His low-budget realization of this principle involved a lot of thrift store stainless steel cookware, welded together with varying degrees of success, with liberal applications of epoxy to seal up any leaks. And an electric smores cooker for the heating element, which was a nice touch. The low-budget approach extended even to the oil for the pump; rather than shelling out for expensive specialty oil, [Lucas] distilled some from a WD-40 silicone spray lubricant.

The video below details all the travails [Lucas] encountered along the way, plus the testing process. The results were at least encouraging — the diffusion pump was pulling vacuum far in excess of what the roughing pump was capable of. He clearly still has some work to do, but getting as far as he did with the scrap heap of parts he cobbled together is pretty impressive.

[Lucas]’ goal with all this? A fusion reactor. No, not that kind. This kind. Continue reading “An Oil Diffusion Vacuum Pump From Thrift Store Junk”

Digital Rain Animation Crammed Into Pi Pico

With a new Matrix movie now in cinemas, we’ve all been reminded of those screensavers that were just the coolest thing ever when the original film dropped in 1999. [en0b] decided to recreate the classic “digital rain” effect on the Raspberry Pi Pico, using up all the little microcontroller’s storage in the process.

Rather than rely on existing graphics libraries, [en0b] set about using a high-quality GIF for the animation. The original file was 8 MB, which was far too big to fit on the Pico. After some finagling in an image editor and with the help of a custom Python script, however, [en0b] managed to fit the 127-frame animation at 240 x 135 resolution into the 2 MB Flash onboard the chip. With the microcontroller hooked up to the 1.14″ IPS “Pico Display” from Pimoroni, the final looks great and faithfully recreates the aesthetic seen in the film.

[en0b]’s technique could reliably be used for displaying any GIF that you can cut down to 14 to 16 colors without losing too much quality. It’s not the world’s highest-end graphics format, but it does the job for little animations like these.

We’ve seen similar builds before too, using more heavy-duty hardware to build a magic 8-ball in much the same way. Meanwhile, if you’ve got your own neat little GIF hacks or Pico projects, don’t hesitate to send them in!

Artist operating artistic visualizer with MIDI keyboard

Synth And Visualizer Combo Has Retrocomputing Vibe

[Love Hultén]’s latest piece of interactive art is the SYNTH#BOI, a super-clean build with something of the semi-cyberdeck, semi-vintage computing vibe to it. The device is a combination synthesizer and visualizer, with a 15-inch display, MIDI keyboard, and based on an Intel NUC i5 small form factor PC.

There are not many details about the internal workings of the device, but the high quality of the build is very evident. Photos show a fantastic-looking enclosure with clean lines and sharp finish; it’s a reminder that careful measuring and attention to detail can be the difference between something that looks like a hack job, and something that looks like a finished product.

Watch the SYNTH#BOI in action in the video, embedded below. And if the name [Love Hultén] seems familiar, it’s probably because we featured his VOC-25 “Pink Denture Synth”, a concept instrument with a decidedly memorable design of its own.

Continue reading “Synth And Visualizer Combo Has Retrocomputing Vibe”

suspended carbon nanotube

Falling Down The Carbon Rabbit Hole

Research projects have a funny way of getting blown out of proportion by the non-experts, over-promising the often relatively small success that the dedicated folks doing the science have managed to eke out. Scaling-up cost-effectively is one of the biggest killers for commercializing research, which is why recent developments in creating carbon nanotube transistors have us hopeful.

Currently, most cutting-edge processes use FETs (Field Effect Transistors). As they’ve gotten smaller, we’ve added fins and other tricks to get around the fact that things get weird when they’re small. The industry is looking to move to GAAFETs (Gate All Around FET) as Intel and Samsung have declared their 3 nm processes (or equivalent) will use the new type of gate. As transistors have shrunk, the “off-state” leakage current has grown. GAAFETs are multi-gate devices, allowing better control of that leakage, among other things.

As usual, we’re already looking at what is past 3 nm towards 2 nm, and the concern is that GAAFET won’t scale past 3 nm. Carbon Nanotubes are an up-and-coming technology as they offer a few critical advantages. They conduct heat exceptionally well, exhibit higher transconductance, and conduct large amounts of power. In addition, they show higher electron mobility than conventional MOSFETs and often outperform them with less power even while being at larger sizes. This is all to say that they’re an awesome piece of tech with a few caveats. Continue reading “Falling Down The Carbon Rabbit Hole”

3d printed windvane

3D Printed Sensor For Finding Wind Direction And Likely Much More

Have you ever wondered how an electronic wind vane translates a direction into a unique signal? It seems as though it might be very complicated, and indeed some of them are. [martinm] over at yoctopuce.com has an excellent writeup about measuring wind direction using just a single, easily printed disk and some phototransistors.

Commercial weather vanes often use complicated multi-tracked disks with magnets and reed switches, conductive traces and brushes, or some other means of getting a fine resolution. Unfortunately some of these are prone to wear or are otherwise more complicated than they need to be.

What makes [martinm]’s solution unique is that they have applied previous research on the subject to a simple and durable 3d printed wind vane that looks like it’ll be able to handle whatever global warming can throw at it. The encoder’s simplicity means that it could likely be used in a large number of applications where low resolution position sensing is more than enough- the definition of a great hack!

Adding more tracks or even more disks would enable higher resolution, but the 12 degree resolution seems quite good for the purpose. Such a neat wind vane design will surely be welcome if you want to 3d print your own weather station. Thanks to [Adrian] for the great tip!

Honda Ignition Coils Sing The Song Of Their People

High-voltage experimenters have been using automotive ignition coils to generate impressive sparks in the home lab for decades, and why not? They’re cheap, easily obtainable, and at the end of the day, producing sparks is literally what they’re designed to do. But that doesn’t mean there isn’t room for improvement.

In his latest Plasma Channel video [Jay Bowles] revisits this classic experiment, bringing to bear the considerable high-voltage experience he’s gained over the last several years. Building on an earlier setup that used a single Honda ignition coil, this new dual-coil version can produce up to 60,000 volts and is driven by a cleaner and more reliable circuit based on the iconic 555 timer. A pair of potentiometers on the front of the driver can adjust its square wave output from 1 to 10 kilohertz manually, while a commercial Bluetooth audio receiver tied into the 555 circuit allows the output to be modulated by simply playing audio from a paired device.

Continue reading “Honda Ignition Coils Sing The Song Of Their People”