Decker Is The Cozy Retro Creative Engine You Didn’t Know You Needed

[John Earnest]’s passion project Decker is creative software with a classic MacOS look (it’s not limited to running on Macs, however) for easily making and sharing interactive documents with sound, images, hypertext, scripted behavior, and more to allow making just about anything in a WYSIWYG manner.

Decker creates decks, which can be thought of as a stack of digital cards that link to one another. Each card in a deck can contain cozy 1-bit art, sound, interactive elements, scripted behavior, and a surprisingly large amount of other features.

Curious? Check out the Decker guided tour to get a peek at just what Decker is capable of. Then download it and prototype an idea, create a presentation, make a game, or just doodle some 1-bit art with nice tools. Continue reading “Decker Is The Cozy Retro Creative Engine You Didn’t Know You Needed”

Multispectral Imaging Shows Erased Evidence Of Ancient Star Catalogue

Ancient Greek astronomer Hipparchus worked to accurately catalog and record the coordinates of celestial objects. But while Hipparchus’ Star Catalogue is known to have existed, the document itself is lost to history. Even so, new evidence has come to light thanks to patient work and multispectral imaging.

Hipparchus’ Star Catalogue is the earliest known attempt to record the positions of celestial bodies (predating Claudius Ptolemy’s work in the second century, which scholars believe was probably substantially based on Hipparchus) but direct evidence of the document is slim. Continue reading “Multispectral Imaging Shows Erased Evidence Of Ancient Star Catalogue”

Bare Bones Vacuum Forming, Just Add Plastic Plates

Vacuum forming is a handy thing to be able to do, and [3DSage] demonstrates how to do a bare-bones system that can form anything smaller than a dinner plate with little more than a 3D printed fitting to a vacuum cleaner, a heat gun, and a trip to the dollar store.

Plastic plates from the dollar store make excellent forming sheets, and in a variety of colors.

The 3D printed piece is a perforated table that connects to a vacuum cleaner hose, and [3DSage] mentions elsewhere that he tried a few different designs and this one worked the best. A cardboard box makes an expedient stand. The object being molded goes on the table, and when the vacuum is turned on, air gets sucked down into the holes.

As for the thermoforming itself, all that takes is some cheap plastic plates and a heat gun. Heat the plastic until it begins to droop, then slap it down onto the vacuum table and watch the magic happen. Using plastic plates like this is brilliant. Not only are they economical, but their rim serves as a built-in handle and helps support the sagging plastic.

Thermoforming plastic on a 3D-printed vacuum table and using 3D-printed molds definitely isn’t a system that will be cranking parts out all day long, but as long as one allows time for everything to cool off in between activations, it’ll get the job done. Nylon will hold up best but even PLA can be serviceable.

Watch it in action in the video embedded below. The video is actually about [3DSage] making adorable Game Boy themed s’mores, but here’s a link to the exact moment the vacuum forming part happens.

Continue reading “Bare Bones Vacuum Forming, Just Add Plastic Plates”

Get A Fresh Build Plate At The Push Of A Button

For best results, a build sheet for a 3D printer’s print bed should be handled and stored by the edges only. To help make that easier, [Whity] created the Expandable Steel Sheet Holder system that can store sheets efficiently without touching their main surfaces, and has a clever mechanism for ejecting them at the push of a button.

Pushing the button (red, bottom left) pivots the section at the top right, ejecting the plate forward for easy retrieval.

The design is 3D printable and made to be screwed to the bottom of a shelf, which is great for space saving. It can also be extended to accommodate as many sheets as one wishes, and there’s a clever method for doing that.

Once the first unit is fastened to a shelf, adding additional units later is as simple as screwing them to the previous one with a few M3 bolts, thanks to captive nuts in the previously-mounted unit. It’s a thoughtful feature that makes it easy to expand after the fact. Since build sheets come in a variety of different textures and surfaces for different purposes, one’s collection does tends to grow.

Interested, but want it to fit some other manufacturer’s sheets? The design looks easy to modify, but before you do that, check out the many remixes and you’re likely to find what you’re looking for. After all, flexible magnetic build sheets are useful in both resin and filament-based 3D printing.

See Some Of The Stranger VR Ideas From SIGGRAPH

[Devin Coldewey] shared his experiences with some of the more unusual VR concepts on display at SIGGRAPH 2023. Some of these ideas are pretty interesting in their own right, and even if they aren’t going to actually become commercial products they give some insight into the kinds of problems that are being worked on. Read on to see if anything sparks ideas of your own.

In the area of haptics and physical feedback, Sony shared research prototypes that look like short batons in which are hidden movable weights. These weights can shift up or down on demand, altering their center of gravity. [Devin] states that these units had a mild effect on their own, but when combined with VR visuals the result was impressive. There’s a video demonstration of how they work. Continue reading “See Some Of The Stranger VR Ideas From SIGGRAPH”

Here’s Why GPUs Are Deep Learning’s Best Friend

If you have a curiosity about how fancy graphics cards actually work, and why they are so well-suited to AI-type applications, then take a few minutes to read [Tim Dettmers] explain why this is so. It’s not a terribly long read, but while it does get technical there are also car analogies, so there’s something for everyone!

He starts off by saying that most people know that GPUs are scarily efficient at matrix multiplication and convolution, but what really makes them most useful is their ability to work with large amounts of memory very efficiently.

Essentially, a CPU is a latency-optimized device while GPUs are bandwidth-optimized devices. If a CPU is a race car, a GPU is a cargo truck. The main job in deep learning is to fetch and move cargo (memory, actually) around. Both devices can do this job, but in different ways. A race car moves quickly, but can’t carry much. A truck is slower, but far better at moving a lot at once. Continue reading “Here’s Why GPUs Are Deep Learning’s Best Friend”

High Quality 3D Scene Generation From 2D Source, In Realtime

Here’s some fascinating work presented at SIGGRAPH 2023 of a method for radiance field rendering using a novel technique called Gaussian Splatting. What’s that mean? It means synthesizing a 3D scene from 2D images, in high quality and in real time, as the short animation shown above shows.

Neural Radiance Fields (NeRFs) are a method of leveraging machine learning to, in a way, do what photogrammetry does: synthesize complex scenes and views based on input images. But NeRFs work in a fraction of the time, and require only a fraction of the source material. There are different ways to go about this and unsurprisingly, there tends to be a clear speed vs. quality tradeoff. But as the video accompanying this new work seems to show, clever techniques mean the best of both worlds.

A short video summary is embedded just below the page break. Interested in deeper details? The research PDF is here. The amount of development this field has seen is nothing short of staggering, and certainly higher in quality than what was state-of-the-art for NeRFs only a year ago.

Continue reading “High Quality 3D Scene Generation From 2D Source, In Realtime”