Forever Writing On Monofilament Fishing Line

Collectively, we have a long-term memory problem. Paper turns to mulch, dyes in optical disks degrade, iron oxides don’t last forever, and flash memories will eventually fade away. So what do you do when you want to write something down and make sure it’s around a couple of thousand years from now? Easy — just use something that even Mother Nature herself has trouble breaking down: plastic.

Specifically, fluoropolymer fishing line, which is what [Nikolay Valentinovich Repnitskiy] uses as a medium in his “Carbon Record” project. There’s not a lot of information in the repository, but the basic idea is to encode characters by nicking the fishing line along its length. The encoder is simple enough; a spool of fresh line is fed into a machine where a solenoid drives a sharpened bolt against the filament. This leaves a series of nicks that encode the ones and zeros of 255 ASCII characters. It looks like [Nikolay] went through a couple of prototypes before settling on the solenoid; an earlier version used a brushed motor to drive the encoder, but the short, rapid movements proved too much for the motor to handle. We’ve included a video below that shows the device encoding some text; sounds a little like Morse to us.

There seems to be a lot more going on with this device than the repo lets on; we’d love to know what the big heat sink on top is doing, for instance. Hopefully we’ll get more details, including how [Nikolay] intends to decode the dents. Or perhaps that’s an exercise best left to whoever finds these messages a few millennia hence.

3D Printing Improves Passive Pixel Water Gauge

Here at Hackaday, we feature all kinds of projects, and we love them all the same. But some projects are a little easier to love than others, especially those that get the job done in as simple a way as possible, with nothing extra to get in the way. This completely electronics-free water gauge is a great example of doing exactly as much as needs to get done, and not a bit more.

If this project looks a bit familiar, it’s because we featured [Johan]’s previous version of “Pixel Pole” a few years back. Then as now, the goal of the build is to provide a highly visible level gauge for a large water tank that’s part of an irrigation system. The basic idea was to provide a way of switching a pump on when the tank needed filling, and off when full. [Johan] accomplished this with a magnetic float inside the tank and reed switches at the proper levels outside the tank, and then placed a series of magnetic flip dots along the path of the float to provide a visual gauge of the water level. The whole thing was pretty clever and worked well enough.

But the old metal flip dots were getting corroded, so improvements were in order. The new flip dots are 3D printed, high-visibility green on one side and black on the other. The only metal parts are the neodymium magnet pressed into a slot in the disc and a sewing pin for the axle. The housing for each flip dot is also printed, with each module snapping to the next so you can create displays of arbitrary height. The video below shows printing, assembly, and the display in action.

[Johan]’s improvements are pretty significant, especially in assembly; spot-welding was a pretty cool method to use in the first version, but printing and snapping parts together scales a lot better. And this version seems like it’ll be much happier out in the elements too. Continue reading “3D Printing Improves Passive Pixel Water Gauge”

Flipped Transformer Powers Budget-Friendly Vacuum Tube Amp

If you’ve ever wondered why something like a radio or a TV could command a hefty fraction of a family’s yearly income back in the day, a likely culprit is the collection of power transformers needed to run all those hungry, hungry tubes. Now fast-forward a half-century or more, and affordable, good-quality power transformers are still a problem, and often where modern retro projects go to die. Luckily, [Terry] at D-Lab Electronics has a few suggestions on budget-friendly transformers, and even shows off a nice three-tube audio amp using them.

The reason transformers were and still are expensive has a lot to do with materials. To build a transformer with enough oomph to run everything takes a lot of iron and copper, the latter of which is notoriously expensive these days. There’s also the problem of market demand; with most modern electronics favoring switched-mode power supplies, there’s just not a huge market for these big lunkers anymore, making for a supply and demand equation that’s not in the hobbyist’s favor.

Rather than shelling out $70 or more for something like a Hammond 269EX, [Terry]’s suggestion is to modify an isolation transformer, specifically the Triad N-68X. The transformer has a primary designed for either 120 or 230 volts, and a secondary that delivers 115 volts. Turn that around, though, and you can get 230 volts out from the typical North American mains supply — good enough for the plate supply on the little amp shown. That leaves the problem of powering the heaters for the tubes, which is usually the job of a second 6- or 12-volt winding on a power transformer. Luckily, the surplus market has a lot of little 6.3-volt transformers available on the cheap, so that shouldn’t be a problem.

We have to say that the amp [Terry] put these transformers to work in sounds pretty amazing — not a hint of hum. Good work, we say, but we hope he has a plan in case the vacuum tube shortage gets any worse.

Continue reading “Flipped Transformer Powers Budget-Friendly Vacuum Tube Amp”

Hackaday Links Column Banner

Hackaday Links: November 5, 2023

As I write this, Supercon 2023 is in full swing down in Pasadena — 80 degrees and sunny at the moment, as opposed to 50 and pouring rain where I am, not that I’m bitter. Luckily, though, we can all follow along with the proceedings thanks to the livestreams on the Hackaday channel, which of course will all be available once they’re edited in case you miss anything live. There are a ton of interesting talks coming up, so there’ll be a lot to catch up on when the dust settles. And that won’t be far from now; by the time this post publishes, Supercon will be all but over, which makes it the Thanksgiving dinner of cons — all that work and it’s over in just a few minutes.

Continue reading “Hackaday Links: November 5, 2023”

Lessons In Printer Poop Recycling

The fundamental problem with multi-color 3D printing using a single hotend is that they poop an awful lot. Every time they change filaments, they’ve got to purge the single nozzle, which results in a huge number of technicolor “purge poops” which on some machines are even ejected out a chute at the back of the printer. The jokes practically write themselves.

What’s not a joke, though, is the sheer mass of plastic waste this can produce. [Stefan] from CNC Kitchen managed to generate over a kilo of printer poop for a 500-gram multi-color print. So he set about looking for ways to turn printer poops back into filament, with interesting results. The tests are based around a commercial lab-scale filament extruder, a 3Devo Composer, but should apply to almost any filament extruder, even the homebrew ones. A few process tips quickly became evident. First, purge poops are too big and stringy (ick) to feed directly into a filament extruder, so shredding was necessary.

Second, everything needs to be very clean — no cross-contamination with plastics other than PLA, no metal bits in the chopped-up plastic bits, and most importantly, no water contamination. [Stefan]’s first batch of recycled filament came from purge poops that had been sitting around a while, and sucked a lot of water vapor from the air. A treatment in a heated vacuum chamber seems to help, but what worked best was using purge poops hot and fresh from a print run. Again, ick.

[Stefan] eventually got a process down that produced decent, usable filament that would jam the printer or result in poor print quality. It even had a pretty nice color, which of course is totally dependent on the mix of colors you start with. Granted, not everyone has access to a fancy filament extruder like his, so this may not be practical for everyone, but it at least shows that there’s a path to reducing the waste stream from any printer, especially multi-material ones.

Continue reading “Lessons In Printer Poop Recycling”

Wooden Game Boy Is A Challenging Intro CNC Project

[Sebastian] describes himself as “a total noob” when it comes to CNC, so in an attempt to get to know his new CNC router, he chose about the most complex possible project — replicating an original Game Boy case in wood. And spoiler alert: he nailed it.

Of course, he did have a few things going for him. At least from a straight woodworking perspective, it’s hard to go wrong by choosing walnut as your material. Then again, it can be unforgiving at times, and picky about tooling, which is probably why [Sebastian] used nine different tools to get the job done. But where he upped the difficulty level was in reproducing so many of the details of the original injection-molded plastic case. There are top and bottom shells, each of which has to be milled from both sides. This makes registration tricky when the parts are flipped. Specific indexing holes were used for that, along with the old “blue tape and CA glue” fixturing trick, which seemed to work quite well. For our money, though, the best bit is the lettering on the front face, which was milled out with an engraving bit and then filled with a spritz of white spray paint. A surfacing bit then came along to knock the overspray down, leaving labels that contrast beautifully with the dark wood. Gorgeous!

It wasn’t all easy sailing, though. There are just some things plastic can do that wood can’t, like holding screw threads in small studs without splitting. So, the case had to be glued shut once the mix of salvaged and new components went in. Still, it looks fabulous, and [Sebastian] says what we see in the video below is the one and only piece. Pretty sweet for the first try. Surprisingly, it doesn’t seem as if we’ve seen a wooden Game Boy before — a wooden NES, sure, but not a Game Boy.

Continue reading “Wooden Game Boy Is A Challenging Intro CNC Project”

Just How Dodgy Are Cheap USB Chargers Anyway?

Aside from apparently having both the ability to reproduce on their own and simultaneously never being around when you need one, USB chargers seem innocuous enough. The specs are simple: convert mains voltage to 5 volts, and don’t kill anyone while doing it. Both specs are typically met by most designs, but judging by [DiodeGoneWild]’s latest USB charger teardown, the latter only just barely, and with a whole lot of luck.

The sad state of plug-in USB power supplies is one of [DiodeGoneWild]’s pet gripes, and deservedly so. Most USB chargers cram a lot of electronics into a mighty small volume, and are built to a price point, meaning that something has to give in the design. In the case of the two units he tears apart in the video below, it’s pretty clear where the compromises are. Neither unit met the specs on the label in terms of current supplied and voltage regulation, even the apparently more capable quick charger, which is the first to go under the knife. The PCB within holds some alarming surprises, like the minimal physical isolation between the mains part of the circuit and the low-voltage section, but the real treat is the Schottky diode that gets up to 170°C under full load. Safety tip: when you smell plastic burning, throw the thing out.

The second charger didn’t fare any better; although it didn’t overheat, that’s mainly because it shut itself off before it could deliver a fraction of its rated 1 amp output. The PCB construction was shoddy in the extreme, with a squiggly trace standing in for a proper fuse and a fraction of a millimeter separation between primary and secondary traces. The flyback transformer was a treat, too; who doesn’t want to rely on a whisper-thin layer of cheap lacquer to keep mains voltage out of your phone?

All in all, these designs are horrible, and we have to thank [DiodeGoneWild] for the nightmares we’ll have whenever we plug into one of these things from now on. On the other hand, this was a great introduction to switch-mode power supply designs, and what not to do with our own builds. Continue reading “Just How Dodgy Are Cheap USB Chargers Anyway?”