PI Board chess board on a table in a room

Chess What: One More Pi-Powered Board

Chess is timeless, but automating it? That’s where the real magic begins. Enter [Tamerlan Goglichidze]’s Pi Board, an automated chess system that blends modern tech with age-old strategy. Inspired by Harry Potter’s moving chessboard and the commercial Square Off board, [Tamerlan] re-imagines the concept using a Raspberry Pi, stepper motors, and some clever engineering. It’s not just about moving pieces — it’s about doing so with precision and flair.

At its core, the Pi Board employs an XY stepper motor grid coupled with magnets to glide chess pieces across the board. While electromagnets seemed like a promising start, [Tamerlan] found them impractical due to overheating and polarity-switching issues. Enter servo linear actuators: efficient, precise, and perfect for the job.

But the innovation doesn’t stop there. A custom algorithm maps the 8×8 chess grid, allowing motors to track positions dynamically—no tedious resets required. Knight movements and castling? Handled with creative coding that keeps gameplay seamless. [Tamerlan] explains it all in his sleekly designed build log.

Though it hasn’t been long since we featured a Pi-powered LED chess board, we feel that [Tamerlan]’s build stands out for its ingenuity and optimization. For those still curious, we have a treasure trove of over fifty chess-themed articles from the last decade. So snuggle up during these cold winter months and read up on these evergreens!

Continue reading “Chess What: One More Pi-Powered Board”

Receipt paper mural from above eye level

Massive Mural From Thermal Receipt Paper

Turning trash into art is something we undoubtedly all admire. [Davis DeWitt] did just that with a massive mural made entirely from discarded receipt paper. [Davis] got lucky while doing some light dumpster diving, where he stumbled upon the box of thermal paper rolls. He saw the potential them and, armed with engineering skills and a rental-friendly approach, set out to create something original.

The journey began with a simple test: how long can a receipt be printed, continuously? With a maximum length of 10.5 feet per print, [Davis] designed an image for the mural using vector files to maintain a high resolution. The scale of the project was a challenge in itself, taking over 13 hours to render a single image at the necessary resolution for a mural of this size. The final piece is 30 foot (9.144 meters) wide and 11 foot (3.3528 meters) tall – a pretty conversational piece in anyone’s room – or shop, in [Davis]’ case.

Once the design was ready, the image was sliced into strips that matched the width of the receipt paper. Printing over 1,000 feet of paper wasn’t without its issues, so [Davis] designed a custom spool system to undo the curling of the receipts. Hanging the mural involved 3D-printed brackets and binder clips, allowing the strips to hang freely with a kinetic effect.

Though the thermal paper will fade over time, the beauty of this project lies in its adaptability—just reprint any faded strips. Want to see how it all came together? Watch the full process here.

Continue reading “Massive Mural From Thermal Receipt Paper”

Historical map of The Netherlands overlayed with clouds

Hacking Global Positioning Systems Onto 16th-Century Maps

What if GPS had existed in 1565? No satellites or microelectronics, sure—but let’s play along. Imagine the bustling streets of Antwerp, where merchants navigated the sprawling city with woodcut maps. Or sailors plotting Atlantic crossings with accuracy unheard of for the time. This whimsical intersection of history and tech was recently featured in a blog post by [Jan Adriaenssens], and comes alive with Bert Spaan’s Allmaps Here: a delightful web app that overlays your GPS location onto georeferenced historical maps.

Take Antwerp’s 1565 city map by Virgilius Bononiensis, a massive 120×265 cm woodcut. With Allmaps Here, you’re a pink dot navigating this masterpiece. Plantin-Moretus Museum? Nailed it. Kasteelpleinstraat? A shadow of the old citadel it bordered. Let’s not forget how life might’ve been back then. A merchant could’ve avoided morning traffic and collapsing bridges en route to the market, while a farmer relocating his herd could’ve found fertile pastures minus the swamp detour.

Unlike today’s turn-by-turn navigation, a 16th-century GPS might have been all about survival: avoiding bandit-prone roads, timing tides for river crossings, or tracking stars as backup. Imagine explorers fine-tuning their Atlantic crossings with trade winds mapped to the mile. Georeferenced maps like these let us re-imagine the practical genius of our ancestors while enjoying a modern hack on a centuries-old problem.

Although sites like OldMapsOnline, Google Earth Timelapse (and for the Dutch: TopoTijdreis) have been around for a while, this new match of technology and historical detail is a true gem. Curious to map your own world on antique charts? Navigate to Allmaps and start georeferencing!

Student-built rocket launch in Black Rock Desert, Nevada

Aftershock II: How Students Shattered 20-Year Amateur Rocket Records

When it comes to space exploration, we often think of billion-dollar projects—NASA’s Artemis missions, ESA’s Mars rovers, or China’s Tiangong station. Yet, a group of U.S. students at USC’s Rocket Propulsion Lab (RPL) has achieved something truly extraordinary—a reminder that groundbreaking work doesn’t always require government budgets. On October 20, their homemade rocket, Aftershock II, soared to an altitude of 470,000 feet, smashing the amateur spaceflight altitude and speed records held for over two decades. Intrigued? Check out the full article here.

The 14-foot, 330-pound rocket broke the sound barrier within two seconds, reaching hypersonic speeds of Mach 5.5—around 3,600 mph. But Aftershock II didn’t just go fast; it climbed higher than any amateur spacecraft ever before, surpassing the 2004 GoFast rocket’s record by 90,000 feet. Even NASA-level challenges like thermal protection at hypersonic speeds were tackled using clever tricks. Titanium-coated fins, specially engineered heat-resistant paint, and a custom telemetry module ensured the rocket not only flew but returned largely intact.

This achievement feels straight out of a Commander Keen adventure—scrappy explorers, daring designs, and groundbreaking success against all odds. The full story is a must-read for anyone dreaming of building their own rocket.

Continue reading “Aftershock II: How Students Shattered 20-Year Amateur Rocket Records”

Custom built RGB laser firing beam

Lasers, Galvos, Action: A Quest For Laser Mastery

If you’re into hacking hardware and bending light to your will, [Shoaib Mustafa]’s latest project is bound to spike your curiosity. Combining lasers to project multi-colored beams onto a screen is ambitious enough, but doing it with a galvanomirror, STM32 microcontroller, and mostly scratch-built components? That’s next-level tinkering. This project isn’t just a feast for the eyes—it’s a adventure of control algorithms, hardware hacks, and the occasional ‘oops, that didn’t work.’ You can follow [Shoaib]’s build log and join the journey here.

The nitty-gritty is where it gets fascinating. Shoaib digs into STM32 Timers, explaining how modes like Timer, Counter, and PWM are leveraged for precise control. From adjusting laser intensity to syncing galvos for projection, every component is tuned for maximum flexibility. Need lasers aligned? Enter spectrometry and optical diffusers for precision wavelength management. Want real-time tweaks? A Python-controlled GUI handles the instruments while keeping the setup minimalist. This isn’t just a DIY build—it’s a work of art in problem-solving, with successes like a working simulation and implemented algorithms along the way.

If laser projection or STM32 wizardry excites you, this build will inspire. We featured a similar project by [Ben] back in September, and if you dig deep into our archives, you can eat your heart out on decades of laser projector projects. Explore Shoaib’s complete log on Hackaday.io. It is—literally—hacking at its most brilliant.

Large gears on a bridge in Geneva, Switzerland

Gear Up: A 15-Minute Intro On Involute Gears

If you’re into CNC machining, mechanical tinkering, or just love a good engineering rabbit hole, you’re in for a treat. Substack’s [lcamtuf] has written a quick yet insightful 15-minute introduction to involute gears that’s as informative as it is accessible. You can find the full article here. Compared to Hackaday’s more in-depth exploration in their Mechanisms series over the years, this piece is a beginner-friendly gateway into the fascinating world of gear design.

Involute gears aren’t just pretty spirals. Their unique geometry minimizes friction and vibration, keeps rotational speeds steady, and ensures smooth torque transfer—no snags, no skips. As [lcamtuf] points out, the secret sauce lies in their design, which can’t be eyeballed. By simulating the meshing process between a gear and a rack (think infinite gear), you can create the smooth, rolling movement we take for granted in everything from cars to coffee grinders.

From pressure angles to undercutting woes, [lcamtuf] explores why small design tweaks matter. The pièce de résistance? Profile-shifted gears—a genius hack for stronger teeth in low-tooth-count designs.

Whether you’re into the theory behind gear ratios, or in need of a nifty tool to cut them at home, Hackaday has got you covered. Inspired?

[James] and his Lemontron portable 3D printer

If Life Gives You Lemons, Build This Lemontron

What if your 3D printer could fit in a box of filament but still rival the build plate size of heavyweights? Enter the Lemontron, a free and open source portable printer making waves in the maker community for its compact form factor and budget-friendly price. Watch [James]’ video on his build story here. Built around the Positron drive—a unique mechanism introduced by [Kralyn] in 2022—the Lemontron is the latest evolution of this innovative design. Although Kralyn mysteriously disappeared, their work inspired other projects like the Positron JourneyMaker and this Lemontron.

The Lemontron started as a unibody chassis mod for the JourneyMaker but grew into a complete redesign, cutting costs in half without sacrificing performance. By eliminating expensive CNC parts, it’s entirely made from off-the-shelf components, bringing the build cost to just $413. Compare that to $800 for the JourneyMaker and $699 for the Positron v3.2 kit.

Overhead photo of [James]' hands assembling the Lemontron Portable 3D printerRecent video updates show the Lemontron in action, printing impressively large and complex models. It tackled a marble run with 80-degree unsupported overhangs and a ‘comically large’ Benchy, proving its capability. Its compact design, paired with robust performance, is an exciting alternative for tinkerers seeking quality on a budget.

The Lemontron is in its final development stages, with frequent updates dropping on its YouTube channel. If you’re in the market for a more “traditional” mini-printer, check out this cool suitcase model from 2014.

Continue reading “If Life Gives You Lemons, Build This Lemontron”