A dark brown bench suspended between two white and grey rectangular pillars. They are capped in the same brown HDPE material. Aluminum uprights go to a curved solar panel roof that looks somewhat similar to a paragliding chute. The bench is inside a clean-looking workshop with two large toolboxes against a plywood half wall.

Public Power, WiFi, And Shelter

In the US, we’re starting to see some pushback against hostile architecture, and in this vein, [benhobby] built a swanky public power and Wi-Fi access point.

This beautiful piece of infrastructure has 400 watts of solar plugged into 1.2 kWh of battery storage, and can dispense those electrons through any of its 120 VAC, USB-C, or USB-A plugs. The uprights are 3″ aluminum tubing attached to a base consisting of cinder blocks and HDPE panels. Power receptacles are housed in 3D printed enclosures with laser cut acrylic fronts. Three outdoor lights illuminate the stop at night, triggered by a photosensor.

The electronics and battery for the system, including the networking hardware, are in a weatherproof box on each side that can be quickly disconnected allowing field swaps of the hardware. Troubleshooting can then take place back at a workshop. One of the units has already been deployed and has been well-received. [benhobby] reports “There’s one in the wild right now, and it gets plenty of visitors but no permanent tenants.”

Want to see some more interesting hacks for public infrastructure? Check out this self-cooling bus stop, this bus bloom filter, or this public transit display.

Two pieces of paper on a table with a pair of pliers, a screwdriver, and a cup of what is probably coffee or tea. The sheets show a diagram of a bicycle handlebar on one side with a labeled "controller box, controller lever, mount, and battery." The other sheet shows a side view of a 150kg servo mounted on a plate that runs over to a brake caliper with a battery, receiver, and power stabilizer. These parts are also labeled in red text.

Wireless Bike Brakes

Bicycles are the most efficient machines for moving a person around, and wireless drivetrains have been heralded as a way to make shifting more consistent and require less maintenance. [Blake Samson] wondered if the same could be true of wireless brakes.

A closeup of a bike front fork with a large 150kg servo mounted to a plate that puts it above the disc brake caliper. To the side of the caliper, wires are visible going between the servo, control box, and battery.Inspired by the controller for an RC car, [Blake] picked a 150 kg servo attached to a cable-actuated hydraulic disc caliper to apply the braking force. The servo, receiver, power stabilizer, and batteries were all mounted on a custom steel plate fabricated to mount under the caliper. [Blake] cut up an old set of mountain bike brake levers to reuse the handlebar mounts and then put the batteries, controller, and finger triggers on them.

Confident in his hacking skills, [Blake] then took the bike out on some trails to test the brakes. As a prototype, there were a few surprises along the way, like one of the triggers staying locked in the braking position, but they performed admirably enough that he’s mulling over a Mk. 2.

Bikes are one of our favorite hacking platforms. Be sure to checkout this dreamy cargo bike build, an awesome bike camper, or what can happen if your bike is dependent on the cloud to work.

Continue reading “Wireless Bike Brakes”

An image of the inside of a vehicle wheel. An outer ring gear is attached to two articulated sets of three small helical gears attached to a central sun gear. A shaft from the right side enters into the sun gear.

A Revolution In Vehicle Drivetrains?

Power delivery in passenger vehicle drivetrains hasn’t changed much since the introduction of the constant velocity (CV) joint in the 1930s. Most electric vehicles still deliver power via the same system used by internal combustion cars. Hyundai/Kia has now revealed a system they think will provide a new paradigm with their Universal Wheel Drive System (Uni Wheel). [via Electrek]

What appears at first to be a hub motor is in fact a geared wheel that keeps the motor close without the problem of high unsprung weight. Power is fed into a sun gear which can move independently of the wheel allowing the system to maintain a more consistent driveline and avoid power variability over the range of suspension travel like you’d find in a CV joint experiencing high deflection.

We have some concerns about the durability of such a system when compared with the KISS and long development history of CV joints, but we can’t deny that moving the motors of an electric vehicle out to the corners would allow more packaging flexibility for the cargo and passenger areas. We’re also excited to see open source replicas make their way into smaller robotics projects now that the images have been released. If you’ve already made one in CAD, send us a tip at tips@hackaday.com.

Looking for more interesting innovations in electric cars? How about an off-grid camper van? If you think automakers are overcomplicating something that should be simple, read the Minimal Motoring Manifesto.

Continue reading “A Revolution In Vehicle Drivetrains?”

A bald white man stands behind a table with an Apple II, a large green PCB, and a modular purple and black development board system. Atop the Apple II is what appears to be a smaller Apple II complete with beige case and brown fake keyboard.

Mini Apple IIe Now Fully Functional

Here at Hackaday, we love living in a future with miniaturized versions of our favorite retrocomputers. [James Lewis] has given us another with his fully functional Apple IIe from the Mega II chip.

When we last checked in on the Mega IIe, it was only just booting and had a ways to go before being a fully functional Apple II. We really love the modular dev board he designed to do the extensive debugging required to make this whole thing work. Each of the boards is connected with jumper pins, which [Lewis] admits would have been better as edge connectors since he should’ve known he’d be unplugging and replugging them more than he’d like.

A set of PCBs sits on a table. There is a logic analyzer plugged into one end that looks like a grey square. Three boards stick up at right angles from the main plane which consists of a purple square PCB with the IIe ROM and MEGA chips and a black rectangular PCB with four sets of headers for PCB modules to slot into.

This modular prototyping system paid dividends late in the project when a “MEGA bug” threatened the stability of the entire system. Since it was confined to the keyboard PCB, [Lewis] was able to correct the error and, swapping for the third revision of the board, everything that had been crashing the system now ran.

There were still some issues going to the final unified PCB that nearly made him give up on the project, but perseverance paid off in the end. Combining vintage chips and multiple RP2040s isn’t for the feint of heart.

Now that you have a more conveniently-sized Apple II, why not teach it some new tricks like digital photography or ChatGPT?

Continue reading “Mini Apple IIe Now Fully Functional”

A brown, wooden picture frame with a white matte holds a slightly pixelated photo of gaming miniatures. It is sitting on a wooden table.

A Colorful Take On The E-Ink Photo Frame

Everyone loves sharing photos, and with most pictures being taken on smartphones now, digital frames are more convenient than finding a photo printer. [Wolfgang Ziegler] used an e-ink screen to create a colorful digital picture frame.

Starting with a seven color e-ink HAT he’d forgotten he had, a spare Pi Zero, and analog photo frame, he pieced the parts together into a pretty slick, sunlight readable photo frame. [Ziegler] details how he set up the frame to display new images using the Pimoroni inky library. He set a fifteen minute refresh interval since the color e-ink display takes 30 seconds to refresh to keep it from looking weird too often.

With the holidays coming up, this might make a perfect gift for family that wants to see the latest from your travels without blasting it to the whole internet. We’ve covered a few different options from a lightweight ESP8266 build, to this one that can rotate, and even issues with some of the commercial options.

A black motion system with two stepper motors. A green circuit board is fixed in a rotating cage in the center, and the entire assembly is on a white base atop a green cutting mat. Wires wind through the assembly.

Pi-lomar Puts An Observatory In Your Hands

Humans have loved looking up at the night sky for time immemorial, and that hasn’t stopped today. [MattHh] has taken this love to the next level with the Pi-lomar Miniature Observatory.

Built with a Raspberry Pi 4, a RPi Hi Quality camera, and a Pimoroni Tiny2040, this tiny observatory does a solid job of letting you observe the night sky from the comfort of your sofa (some assembly required). The current version of Pi-lomar uses a 16mm ‘telephoto’ lens and the built-in camera libraries from Raspbian Buster. This gives a field of view of approximately 21 degrees of the sky.

While small for an observatory, there are still 4 spools of 3D printing filament in the five different assemblies: the Foundation, the Platform, the Tower, the Gearboxes and the Dome. Two NEMA 17 motors are directed by the Tiny2040 to keep the motion smoother than if the RPi 4 was running them directly. The observatory isn’t waterproof, so if you make your own, don’t leave it out in the rain.

If you’re curious how we might combat the growing spectre of light pollution to better our nighttime observations, check out how blinking can help. And if you want to build a (much) larger telescope, how about using the Sun as a gravitational lens?

Continue reading “Pi-lomar Puts An Observatory In Your Hands”

A long, skeletal neck of a swan automaton sits on a table. Two men are on either side of it, lowering the swan's body back on.

Restoring The Silver Swan Automaton

It’s easier than ever to build your own robot, but humans have been building automatons since before anyone had even thought of electronics. One beautiful example is the Silver Swan, built in the 18th century.

The brainchild of [John Joseph Merlin] and silversmith [James Cox], the swan features three separate clockwork drives, appearing to swim in a moving river where it snatches fish in its motorized beak. Mark Twain said the swan had “a living grace about his movements and living intelligence in his eyes” when he saw it at the International Exhibition in Paris in 1867.

The swan has been delighting people for 250 years, and recently received some much-deserved maintenance. In the video below, you can see museum staff disassembling the swan including its 113 neck rings which protect the three different chain drives controlling its lifelike motions. Hopefully, with some maintenance, this automaton will still be going strong in 2273.

If you’d like to Bring Back the Age of Automatons, perhaps you should study this bird bath or the “Draughtsman-Writer.”

Continue reading “Restoring The Silver Swan Automaton”