3D Printer Showdown: $350 Consumer Vs $73,000 Pro Machine

The quality of consumer-grade 3D printing has gone way up in recent years. Resin printers, in particular, can produce amazing results and they get less expensive every day. [Squidmar] took a miniature design and printed it (or had it printed) on some cheap resin printers and a 65,000 Euro DWS029. How much difference could there be? You can see for yourself in the video below.

We were surprised at the specs for the more expensive machine. It does use a solid-state laser, but for that cost, the build volume is relatively small — around 15 x 15 x 10 cm. There were actually five prints created on four printers. Three were on what we think of as normal printers, one was on the 65,000 Euro machine, and the fifth print was on a 10,000 Euro printer that didn’t look much different from the less expensive ones.

Of course, there is more to the process than just the printer. The resin you use also impacts the final object. The printers tested included a Phrozen 4K Mini, a Phrozen 8K Mini,  a Solos Pro, and the DWS 029D. The exact resins or materials used was hard to tell in each case, so that may have something to do with the comparisons, too.

Do you get what you pay for? Hard to say. The 8K and Solos were neck-and-neck with some features better on one printer and some better on the other. The DWS029D did perform better, but was it really worth the increase in price? Guess it depends on your sensitivity. The 8K printer did a very credible job for a fraction of the cost. Of course, some of that could have been a result of the materials used, too, but it does seem likely that a very expensive dental printer ought to do better than a hobby-grade machine. But it doesn’t seem to do much better.

The DWS printer uses a laser, while most hobby printers use UV light with an LCD mask. We’ve seen low-end resin printers on closeout for around $100 and you can get something pretty nice in the $200 neighborhood. In between these two extremes are printers that use Digital Light Processing (DLP).

Continue reading “3D Printer Showdown: $350 Consumer Vs $73,000 Pro Machine”

Radio Control Joby Aircraft Uses Six Tiltrotors To Fly

eVTOL (Electric Vertical Take-off and Landing) craft are some of the more exciting air vehicles being developed lately. They aim to combine the maneuverability and landing benefits of helicopters with the environmental benefits of electric drive, and are often touted as the only way air taxis could ever be practical. The aircraft from Joby Aviation are some of the most advanced in this space, and [Peter Ryseck] set about building a radio-controlled model that flies in the same way.

The design is inspired by the Joby eVTOL test vehicle.

The result is mighty complex, with six tilt rotors controlled via servos for the utmost in maneuverability. These allow the vehicle to take off vertically, while allowing the rotors to tilt horizontally for better efficiency in forward flight, as seen on the Bell-Boeing V-22 Osprey.

The build uses a 3D-printed chassis which made implementing all the tilt rotor mounts and mechanisms as straightforward as possible. A Teensy flight controller is responsible for controlling the craft, running the dRehmFlight VTOL firmware. The assembled craft only weighs 320 grams including battery; an impressive achievement given the extra motors and servos used relative to a regular quadcopter build.

With some tuning, hovering flight proved relatively easy to achieve. The inner four motors are used like a traditional quadcopter in this mode, constantly varying RPM to keep the craft stable. The outer two motors are then pivoted as needed for additional control authority.

In forward flight, pitch is controlled by adjusting the angle of the central four motors. Roll is achieved by tilting the rotors on either side of the plane’s central axis, and yaw control is provided by differential thrust. In the transitional period between modes, simple interpolation is used between both modes until transition is complete.

Outdoor flight testing showed the vehicle is readily capable of graceful forward flight much like a conventional fixed wing plane. In the hover mode, it just looks like any other multirotor. Overall, it’s a great demonstration of what it takes to build a successful tilt rotor craft.

We’ve seen tilt rotor UAVs before, and they’re as cool as they are complicated to build. Video after the break.

Continue reading “Radio Control Joby Aircraft Uses Six Tiltrotors To Fly”

The Air Multiplier Fan Principle, Applied To A Jet Engine

Many readers will be familiar with the Dyson Air Multiplier, an ingenious bladeless fan design in which a compressor pushes jets of air from the inside edge of a large ring. This fast-moving air draws the surrounding air through the ring, giving the effect of a large conventional fan without any visible moving parts and in a small package. It’s left to [Integza] to take this idea and see it as the compressor for a jet engine, and though the prototype you see in the video below is fragile and prone to melting, it shows some promise.

His design copies the layout of a Dyson with the compressor underneath the ring, with a gas injector and igniter immediately above it. The burning gas-air mixture passes through the jets and draws the extra air through the ring, eventually forming a roaring jet engine flame exhaust behind it. Unfortunately the choice of 3D print for the prototype leads to very short run times before melting, but it’s possible to see it working during that brief window. Future work will involve a non-combustible construction, but his early efforts were unsatisfactory.

It’s clear that he hasn’t created the equivalent of a conventional turbojet. Since it appears that its operation happens when the flame has passed into the center of the ring, it has more in common with a ramjet that gains its required air velocity with the help of extra energy from an external compressor. Whether he’s created an interesting toy or a useful idea remains to be answered, but it’s certainly an entertaining video to watch.

Meanwhile, this isn’t the first project we’ve seen inspired by the Air Multiplier.

Continue reading “The Air Multiplier Fan Principle, Applied To A Jet Engine”

Acoustic Switching Transistors: A New Kind Of Electronics?

Have you ever heard of topological insulators? These are exotic materials where electricity flows only on the surface with very little loss. Now, according to IEEE Spectrum, scientists at Harvard have used the same concept to create a transistor for sound waves and it may be a new branch of electronics. The actual paper is available if you want some light reading.

Apparently, topological insulators protect electrons moving along their surfaces and edges, something that won the 2016 Nobel Prize in Physics. Photons can also be protected topologically so they move with very little loss across the materials. Making electrons flow in this manner is an attractive proposition, but there are challenges, especially when creating a device that can switch the flow of electrons on and off as you might with a transistor in and out of saturation. Sound waves, however, are much easier to work with.

Continue reading “Acoustic Switching Transistors: A New Kind Of Electronics?”

Long Range Burglar Alarm Relies On LoRa Modules

[Elite Worm] had a problem; there had been two minor burglaries from a storage unit. The unit had thick concrete walls, cellular signal was poor down there, and permanent wiring wasn’t possible. He thus set about working on a burglar alarm that would fit his unique requirements.

An ESP32 is the heart of the operation, paired with a long-range LoRa radio module running at 868 MHz. This lower frequency has much better penetration when it comes to thick walls compared to higher-frequency technologies like 4G, 5G or WiFi. With a little coil antenna sticking out the top of the 3D-printed enclosure, the device was readily able to communicate back to [Elite Worm] when the storage unit was accessed illegitimately.

With an eye to security, the device doesn’t just warn of door open events. If signal is lost from the remote transmitter in the storage unit, perhaps due to an advanced adversary cutting the power, the alarm will also be raised. There’s still some work to be done on the transmitter side, though, as [Elite Worm] needs to make sure the door sensor is reliable under all conditions.

Many put their hardware skills to work in service of security, and we regularly see proprietary alarm systems modified by enterprising hackers. Video after the break.

Continue reading “Long Range Burglar Alarm Relies On LoRa Modules”

3D Printed Jig Makes Custom Springs A Snap

We’ve often heard it said that springs come in in all shapes and sizes…except for the one you need. In light of this, the hardware hacker would do well to keep the tools and knowledge required to make a custom spring close at hand when building something that moves. Luckily, all it really take is some stiff metal wire, a rod, and patience.

Unless you’ve got a 3D printer, that is. In which case, we’d suggest you print out this very clever “Spring Factory” designed by [Vincent Baillet]. The simple tool, consisting of just two parts, makes it easier and faster to make consistent DIY springs when compared to traditional methods. Rather than trying to eyeball the spacing of the coil as you wind the wire around the mandrel, this design does it for you.

As seen in the video, springs made with this tool look very professional. Not only does the threaded mandrel keep the spacing between coils even, it also makes sure all the springs you produce are identical. This can be especially important with projects that need to use multiple matching springs. [Vincent] says his handy tool works with piano wire from 0.8 to 1.2 mm, and slightly thicker if plain steel.

Of course, the obvious flaw in a tool like this is that it can only be used to make springs of a specific diameter. Changing the length is easy enough, just use more or less wire. But to make a thinner or thicker spring, you’d need a different size of mandrel. It seems that [Vincent] has only released the gadget in this approximately 9 mm diameter so far, but here’s hoping a few more sizes get added to the mix before too long.

Looking for something a bit more advanced? This Arduino-powered wire bender is capable of making some very impressive custom springs, among other things.

Continue reading “3D Printed Jig Makes Custom Springs A Snap”

Custom Piano Tickles The Ivories

The core ethos of “hacking” is usually interpreted as modifying something for a use that it wasn’t originally built for. Plenty of builds are modifications or improvements on existing technology, but sometimes that just isn’t enough. Sometimes we have to go all the way down and build something completely from scratch, and [Balthasar]’s recent piano-like musical instrument fits squarely into this category.

This electronic keyboard is completely designed and built from scratch, including the structure of the instrument and the keys themselves. [Balthasar] made each one by hand out of wood and then built an action mechanism for them to register presses. While they don’t detect velocity or pressure, the instrument is capable of defining the waveform and envelope for any note, is able to play multiple notes per key, and is able to change individual octaves. This is thanks to a custom 6×12 matrix connected to a STM32 microcontroller. Part of the reason [Balthasar] chose this microcontroller is that it can do some of the calculations needed to produce music in a single clock cycle, which is an impressive and under-reported feature for the platform.

With everything built and wired together, the keyboard is shockingly versatile. With the custom matrix it is easy to switch individual octaves on the piano to any range programmable, making the 61-key piano capable of sounding like a full 88-key piano. Any sound can be programmed in as well, further increasing its versatility, which is all the more impressive for being built from the ground up. While this build focuses more on the electronics of a keyboard, we have seen other builds which replicate the physical action of a traditional acoustic piano as well.

Continue reading “Custom Piano Tickles The Ivories”