MakerBot Really Wants You To Like Them Again

For the last couple years, a MakerBot press release has generally signaled that more pink slips were going to be heading out to the already shell-shocked employees at their NYC factory. But just last week something that could almost pass as good news came out of the once mighty 3D printer manufacturer, the unveiling of “MakerBot Labs”. A number of mainstream tech sites heralded this as MakerBot’s first steps back into the open source community that launched it nearly a decade ago; signs of a newer and more thoughtful MakerBot.

Reading the announcement for “MakerBot Labs”, you can almost believe it. All the buzz words are there, at least. In fact, if this announcement came from anyone else, in any other field, I’d probably be on board. Sharing knowledge and listening to the community is essential if you want to connect with hackers and makers. But this is MakerBot, and they’ve dug themselves into a very deep hole over the years.

The spectacular fall from grace that MakerBot has experienced, from industry leader to afterthought, makes this hat-in-hand peace offering hard to take seriously. It reads like a company making a last ditch effort to win back the users they were so sure they didn’t need just a few years ago. There is now a whole new generation of 3D printer owners who likely have never even seen a MakerBot printer, and it’s hard to imagine there’s still enough innovation and life in the company to turn that around before they completely fade into obscurity.

Continue reading “MakerBot Really Wants You To Like Them Again”

Hackaday Links Column Banner

Hackaday Links: October 8, 2017

On the top of the popcorn pile for this weekend is an ambiguous tweet from Adafruit that was offered without comment or commentary. [Lady Ada] is holding some sort of fancy incorporation papers for Radio Shack. The smart money is that Adafruit just bought these at the Radio Shack auction a month or so ago. The speculation is that Adafruit just bought Radio Shack, or at least the trademarks and other legal ephemera. Either one is cool, but holy crap please bring back the retro 80s branding.

A Rubik’s Cube is a fantastic mechanical puzzle, and if you’ve never taken one apart, oh boy are you in for a treat. Here’s an RGB LED Rubick’s Cube with not enough detail as to how each square is getting powered. Here’s an open challenge for anyone: build an RGB LED Rubick’s Cube, and Open Source the design.

Last weekend, the front fell off the engine of an Air France A380 flying over Greenland. As with all aircraft incidents, someone has to find the missing bits. It only took a week to find a mangled cowling on an ice sheet. This is incredibly impressive; if you want a comparison to another accident, it took three months to find the fan disk for UA 232 in an Iowa cornfield.

Poorly thought out Kickstarters don’t grab our attention like they used to, but this is an exception. The Aire is a mashup of one of those voice-activated home assistants (Alexa, whatever the Google one is named…) and a drone. The drone half of the build is marginally interesting as a ducted fan coaxial thingy, and building your own home assistant isn’t that hard with the right mics and a Raspberry Pi. The idea is actually solid — manufacturing is another story, though. It appears no one thought about how annoying it would be to have a helicopter following them around their house, or if the mics would actually be able to hear anyone over beating props. Here’s the kicker: this project was successfully funded. People want to buy this. A fool and his or her money…

Processing is cool, although we’re old skool and still reppin’ Max/MSP. It looks like the first annual Processing Community Day is coming up soon. The Processing Community Day will be at the MIT Media Lab on October 21st, with talks from the headliners of the Processing community.

Maker Faire NYC was two weekends ago, the TCT show in Birmingham was last week, and Open Hardware Summit was in Denver this weekend. Poor [Prusa] was at all of them, racking up the miles. He did, however, get to ride [James from XRobots.co.uk]’s electric longboard. There’s some great videos from [James] right here and here.

Speaking of Open Hardware Summit, there was a field trip to Sparkfun and Lulzbot this Friday. The highlight? The biggest botfarm in the states, and probably the second largest in the world. That’s 155 printers, all in their own enclosures, in a room that’s kept at 80° F. They’re printing ABS. Control of the printers is through a BeagleBone running Octoprint. These ‘Bones and Octoprint only control one printer each, and there is no software layer ‘above’ the Octoprint instances for managing multiple printers simultaneously. That probably means the software to manage a botfarm doesn’t exist. There have been attempts, though, but nothing in production. A glove thrown down?

Things Learned From Hot Wire Cutting A Droid’s Body

One of [Bithead]’s passions is making Star Wars droids, and in the process of building the outer shell for one of them he decided to use hot wire foam cutting and make his own tools. Having the necessary parts on hand and having seen some YouTube videos demonstrating the technique, [Bithead] dove right in. Things didn’t go exactly to plan but happily he decided to share what did and didn’t work, and in the end the results were serviceable.

[Bithead] built two hot wire cutters with nichrome wire. The first was small, but the second was larger and incorporated some design refinements. He also got an important safety reminder when he first powered on with his power supply turned up too high; the wire instantly turned red and snapped with an audible bang. He belatedly realized he was foolishly wearing neither gloves nor eye protection.

When it came to use his self-made tools, one of the biggest discoveries was that not all foam is equal in the eyes of a hot wire cutter. This is one of those things that’s common knowledge to experienced people, but isn’t necessarily obvious to a newcomer. A hot wire cutter that made clean and effortless cuts in styrofoam did no such thing with the foam he was using to cast his droid’s outer shell. Still, he powered through it and got serviceable results. [Bithead]’s blog post may not have anything new to people who have worked with foam and hot wire cutters before, but if you’re new to such things you can use it to learn from his experiences. And speaking of improving experiences, [Bithead] most recently snazzed up the presentation of his R2-D2 build by getting tricky with how he hides his remote control.

3D Printed Robotic Arms For Sign Language

A team of students in Antwerp, Belgium are responsible for Project Aslan, which is exploring the feasibility of using 3D printed robotic arms for assisting with and translating sign language. The idea came from the fact that sign language translators are few and far between, and it’s a task that robots may be able to help with. In addition to translation, robots may be able to assist with teaching sign language as well.

The project set out to use 3D printing and other technology to explore whether low-cost robotic signing could be of any use. So far the team has an arm that can convert text into finger spelling and counting. It’s an interesting use for a robotic arm; signing is an application for which range of motion is important, but there is no real need to carry or move any payloads whatsoever.

Closeup of hand actuators and design. Click to enlarge.

A single articulated hand is a good proof of concept, and these early results show some promise and potential but there is still a long ways to go. Sign language involves more than just hands. It is performed using both hands, arms and shoulders, and incorporates motions and facial expressions. Also, the majority of sign language is not finger spelling (reserved primarily for proper names or specific nouns) but a robot hand that is able to finger spell is an important first step to everything else.

Future directions for the project include adding a second arm, adding expressiveness, and exploring the use of cameras for the teaching of new signs. The ability to teach different signs is important, because any project that aims to act as a translator or facilitator needs the ability to learn and update. There is a lot of diversity in sign languages across the world. For people unfamiliar with signing, it may come as a surprise that — for example — not only is American Sign Language (ASL) related to French sign language, but both are entirely different from British Sign Language (BSL). A video of the project is embedded below.

Continue reading “3D Printed Robotic Arms For Sign Language”

Wideband Woes And The Junkbox Miata

As ever, I am fighting a marginally winning battle against my 1991 Mazda MX-5, and this is the story of how I came to install a wideband oxygen sensor in my Japanese thoroughbred. It came about as part of my ongoing project to build myself a viable racecar, and to figure out why my 1990s Japanese economy car engine runs more like a late 1970s Malaise-era boat anchor.

I’ve always considered myself unlucky. My taste for early 90s metal has meant I’ve never known the loving embrace of OBD-2 diagnostics, and I’ve had to make to do with whatever hokey system was implemented by manufacturers who were just starting to produce reliable fuel injection systems.

Narrowband oxygen sensor voltage output. The output is heavily dependent on sensor temperature and highly non-linear, making these sensors unsuitable for delivering a true AFR reading.

This generally involves putting in a wire jumper somewhere, attaching an LED, and watching it flash out the trouble codes. My Mazda was no exception, and after putting up with a car that was running rich enough to leave soot all over the rear bumper, I had to run the diagnostic.

It turned up three codes – one for the cam angle sensor, and two for the oxygen sensor. Now, a cam angle sensor (CAS) fault will normally prevent the car running at all, so it’s safe to assume that was an intermittent fault to keep an eye on.

The oxygen sensor, however, was clearly in need of attention. Its job is to allow the engine control unit (ECU) to monitor the fuel mixture in the exhaust, and make sure it’s not too rich or too lean. As my car was very obviously running too rich, and the diagnostic codes indicated an oxygen sensor failure, a repair was in order.

I priced up replacement sensors, and a new oxygen sensor could be had for under $100. However, it wasn’t exactly what I wanted, as not all oxygen sensors are created equal. Cars in the 80s and 90s typically shipped from the OEM fitted with what’s called a narrowband oxygen sensor. These almost always consist of a zirconia dioxide cell that outputs a voltage depending on the difference in oxygen concentration between the exhaust gas and the free air. These sensors generally sit at 0.45 V when the fuel mixture is stoichiometric, but rapidly change to 0.1 V in a lean condition and 0.9 V in a rich condition. The response is highly non-linear, and changes greatly with respect to temperature, and thus is only good for telling the ECU if it’s rich or lean, but not by how much. ECUs with narrowband sensors tend to hunt a lot when running in closed loop O2 control – you’ll see an engine at idle hunt either side of the magical 14.7 stoichiometric air fuel ratio, never able to quite dial in on the correct number.

As I intend to switch to an aftermarket ECU in the future, I’ll need to tune the car. This involves making sure the air/fuel ratios (AFRs) are correct, and for that I need to be able to properly measure them. Just knowing whether you’re rich or lean isn’t enough, as often it’s desirable to run the engine intentionally rich or lean at certain engine loads. To get a true AFR reading requires fitting a wideband oxygen sensor. These are a little more complicated.

Continue reading “Wideband Woes And The Junkbox Miata”

Be The Firebender You Want To See In The World

Always wanted to be a citizen of Fire Nation? Here’s one way to ace the citizenship exam: punch-activated flaming kung fu gauntlets of doom.

As with all the many, many, many flamethrower projects we’ve featured before, we’ve got to say this is just as bad an idea as they are and that you should not build any of them. That said, [Sufficiently Advanced]’s wrist-mounted, dual-wielding flamethrowers are pretty cool. Fueled by butane and containing enough of the right parts for even a minimally talented prosecutor to make federal bomb-making charges stick, the gauntlets each have an Arduino and accelerometer to analyze your punches. Wimpy punch, no flame — only awesome kung fu moves are rewarded with a puff of butane ignited by an arc lighter. The video below shows a few close calls that should scare off the hairy-knuckled among us; adding a simple metal heat shield might help mitigate potential singeing.

Firebending gloves not enough to satisfy your inner pyromaniac? We understand completely.

Continue reading “Be The Firebender You Want To See In The World”

Fidget Spinner Slash Drone Is Both

So Hackaday loves fidget spinners and we don’t care who knows it. Apparently so does [Jeremy S Cook], who decided to mash up a spinner and a cheap quadcopter. To what end? Is that even a question? Spinners are the bearing-studded equivalent to the Rubik’s Cube craze of the ’80s and all we can do is embrace it.

[Jeremy] designed a quadcopter shape with a hole in the center matching a VCB 22 mm ceramic bearing he had on hand. He CNCed out the design from a sheet of Lexan resin. Then he detached the electronics amd motors from a quad.

He used a rotary tool to cut off the housing, removed the motors, then inserted them in the new frame, using hot glue to secure them. He installed the control board 90 degrees off of the frame, before realizing it would mess with the accelerometer and re-installed it flat. Meanwhile, the center of the frame sports the all-important bearing.

If you’re looking for more quad projects check out these cool projects: a Power-Glove-controlled drone, this PVC-pipe quadcopter frame, and reverse engineering quadcopter controls.

Continue reading “Fidget Spinner Slash Drone Is Both”