Wave-Powered Glider Delivers Your Message In A Bottle

Setting a bottle adrift with a message in it is, by most measures, an act of desperation. The sea regularly swats mighty ships to their doom, so what chance would a tiny glass bottle have bobbing along the surface, subject as it is to wind, waves, and current? Little to none, it would seem, unless you skew the odds a bit with a wave-powered undersea glider to the help the bottle along.

Before anyone gets too worked up about this, [Rulof Maker]’s “Sea Glider” is about a low-tech as a device with moving parts can be. This craft, built from a scrap of teak and a busted wooden ruler, is something that could be assembled in a few hours from whatever you have on hand, even if you’re marooned on an uncharted desert isle. The body of the craft sprouts a set of horizontal planes that can swivel up and down independently. The key to providing a modicum of thrust is that each plane is limited to a 90° swing by stop blocks above and below the pivot. The weighted glider, tethered to the bottle, bobs up and down below the waves, flapping the planes and providing a tiny bit of thrust.

Was it enough to propel the bottle any great distance? We won’t ruin the surprise, but we will say that [Rulof]’s essentially zero-cost build appears to have improved the message in a bottle bandwidth at least somewhat. It’s not a Hackaday Prize-winning robotic sea glider, but it’s a neat hack nonetheless.

Continue reading “Wave-Powered Glider Delivers Your Message In A Bottle”

Robot + Trumpet = Sad Trombone.mp3

[Uri Shaked] is really into Latin music. When his interest crescendoed, he bought a trumpet in order to make some energetic tunes of his own. His enthusiasm flagged a bit when he realized just how hard it is to get reliably trumpet-like sounds out of the thing, but he wasn’t about to give up altogether. Geekcon 2018 was approaching, so he thought, why not make a robot that can play the trumpet for me?

He scoured the internet and found that someone else had taken pains 20 years ago to imitate embouchure with a pair of latex lips (think rubber glove fingers filled with water). Another soul had written about measuring air flow with regard to brass instruments. Armed with this info, [Uri] and partners [Ariella] and [Avi] spent a few hours messing around with air pumps, latex, and water and came up with a proof of concept that sounds like—and [Uri]’s description is spot-on—a broken robotic didgeridoo. It worked, but the sound was choppy.

Fast forward to Geekcon. In a flash of brilliance, [Avi] thought to add capacitance to the equation. He suggested that they use a plastic box as a buffer for air, and it worked. [Ariella] 3D printed some fingers to actuate the valves, but the team ultimately ended up with wooden fingers driven by servos. The robo-trumpet setup lasted just long enough to get a video, and then a servo promptly burned out. Wah wahhhh. Purse your lips and check it out after the break.

If [Uri] ever gets fed up with the thing, he could always turn it into a game controller a la Trumpet Hero.

Continue reading “Robot + Trumpet = Sad Trombone.mp3”

The Incredible Judges Of The Hackaday Prize

The time to enter The Hackaday Prize has ended, but that doesn’t mean we’re done with the world’s greatest hardware competition just yet. Over the past few months, we’ve gotten a sneak peek at over a thousand amazing projects, from Open Hardware to Human Computer Interfaces. This is a contest, though, and to decide the winner, we’re tapping some of the greats in the hardware world to judge these astonishing projects.

Below are just a preview of the judges in this year’s Hackaday Prize. We’re sending the judging sheets out to them, tallying the results, and in less than two weeks we’ll announce the winners of the Hackaday Prize at the Hackaday Superconference in Pasadena. This is not an event to be missed — not only are we going to hear some fantastic technical talks from the hardware greats, but we’re also going to see who will walk away with the Grand Prize of $50,000.


Mitch Altman

Mitch’s early claim to fame is inventing the TV-B-Gone, a device that is so devious it got several Gizmodo reporters banned from CES for life. I suppose the idea was to punish those Gizmodo reporters, but as we all know being banned from CES is a blessing in disguise. Mitch has been published in Make Magazine, 2600, and is a mentor at the HAX accelerator. He is the co-founder of Noisebridge, the legendary San Francisco hackerspace, president and CEO of Cornfield Electronics, and makes his way around to various hacker gatherings where he’s always more than eager to teach people the ins and outs of electronics, soldering, and teaching cool things.

Chris from Clickspring

Clickspring, or Chris as he’s called by people IRL, has made his mark by being one of the best machinist channels on YouTube. Chris began making videos several years ago by recreating a brass clock in his home machine shop. Over the course of several months and millions of views on YouTube, Chris delved deep into the technology of making a clock out of brass stock using the most minimal machine tools. Currently, Chris is working on a multi-part video series where he’s constructing a replica of the Antikythera Mechanism using only technology that would have been available to a Greek engineer around the year 100 BC. This is, simply, one of the greatest feats of experimental archaeology, and it’s happening right now on Chris’ YouTube channel.

Kristin Paget

Kristin ‘Hacker Princess’ Paget is currently working at Lyft designing security systems for self-driving cars and futzing about with wireless security. For fun, she builds IMSI catchers and RFID cloners, and has given talks at the Hackaday Superconference about the laws of IoT Security and at Shmoocon about how terrible contactless credit cards actually are. When it comes to wireless security, Kristin is who you want to talk to, and she was instrumental in getting the FBI off my back that one time.

Ayah Bdeir

Ayah Bdier is the founder and CEO of littleBits, an award-winning platform of easy-to-use electronic building blocks that are empowering kids everywhere to create inventions large and small. Bdeir is an engineer, interactive artist, and one of the cofounders of the Open Hardware Summit. An alumna of the MIT Media Lab, Bdeir was named a TED Senior Fellow in 2013. She’s been featured on CNBC for building the future with next-generation toys, and talking about the importance of providing children with educational and gender-neutral toys.

 

These are just a few of the amazingly accomplished judges we have lined up to determine the winner of this year’s Hackaday Prize. The winner will be announced on November 3rd at the Hackaday Superconference. There are still tickets available, but if you can’t make it, don’t worry. We’re going to be live streaming everything, including the prize ceremony, where one team will walk away with the grand prize of $50,000. It’s not an event to miss.

A Close Look At The Prusa I3 MK3

The Prusa i3 MK3 is, for lack of a better word, inescapable. Nearly every hacker or tech event that I’ve attended in 2018 has had dozens of them humming away, and you won’t get long looking up 3D printing on YouTube or discussion forums without somebody singing its praises. Demand for Prusa’s latest i3 printer is so high that there’s a literal waiting list to get one.

At the time of this writing, over a year after the printer was officially put up for sale, there’s still nearly a month lead time on the assembled version. Even longer if you want to wait on the upgraded powder coated bed, which has unfortunately turned out to be a considerable production bottleneck. But the team has finally caught up enough that the kit version of the printer (minus the powder coated bed) is currently in stock and shipping next day.

I thought this was a good a time as any to pull the trigger on the kit and see for myself what all the excitement is about. Now that I’ve had the Prusa i3 MK3 up and running for a couple of weeks, I can say with confidence that it’s not just hype. It isn’t a revolution in desktop 3D printing, but it’s absolutely an evolution, and almost certainly represents the shape of things to come for the next few years.

That said, it isn’t perfect. There’s still a few elements of the design that left me scratching my head a bit, and some parts of the assembly weren’t quite as smooth as the rest. I’ve put together some of those observations below. This isn’t meant to be a review of the Prusa i3 MK3 printer, there’s more than enough of those already, but hopefully these assorted notes may be of use to anyone thinking of jumping on the Prusa bandwagon now that production has started really ramping up.

Continue reading “A Close Look At The Prusa I3 MK3”

Vibrosight Hears When You Are Sleeping. It Knows When You’re Awake.

No matter how excited you are to dive headfirst into the “Internet of Things”, you’ve got to admit that the effort and expense of going full-on Jetsons is a bit off-putting. To smarten up your home you’ve generally got to buy all new products (and hope they’re all compatible) or stick janky after-market sensors on the gear you’ve already got (and still hope they’re all compatible). But what if there was a cheap and easy way to keep tabs on all your existing stuff? The answer may lie in Cold War era surveillance technology.

As if the IoT wasn’t already Orwellian enough, Vibrosight is a project that leverages a classic KGB spy trick to keep tabs on what’s going on inside your home. Developed by [Yang Zhang], [Gierad Laput] and [Chris Harrison], the project uses retro-reflective stickers and a scanning laser to detect vibrations over a wide area. With this optical “stethoscope”, the system can glean all kinds of information; from how long you’ve been cooking something in the microwave to whether or not you washed your hands.

The project takes its inspiration from the optical eavesdropping system developed by Léon Theremin in the late 1940’s. By bouncing a beam of light off of a window, Theremin’s gadget was able to detect what people inside the room were saying from a distance. The same idea is applied here, except now it uses an automated laser scanner and machine learning to turn detected vibrations into useful information that can be plugged into a home automation system.

For Vibrosight to “listen” to objects, the user needs to place retro-reflective tags on whatever they want to include in the system. The laser will periodically scan around the room looking for these tags. Once the laser finds a new tag, will add it to a running list of targets to keeps an eye on. From there Vibrosight is able to take careful vibration measurements which can provide all sorts of information. In the video after the break, Vibrosight is shown differentiating between walking, jogging, and running on a treadmill and determining what kind of hand tools are being used on a workbench. The team even envisions a future where Vibrosight-ready devices would “hum” their IP address or other identifying information to make device setup easier.

If all this talk of remote espionage at a distance has caught your interest, we’ve covered Theremin’s unique surveillance creations in the past, and even a way to jam them if you’re trying to stay under the radar.

Continue reading “Vibrosight Hears When You Are Sleeping. It Knows When You’re Awake.”

That Time Atari Cracked The Nintendo Entertainment System

It was darkest hour for the video game industry following the holiday shopping season of 1982. The torrent of third party developed titles had flooded the home video game console market to the point of saturation. It incited a price war amongst retailers where new releases were dropped to 85% off MSRP after less than a month on the shelves. Mountains of warehouse inventory went unsold leaving a company like Atari choosing to dump the merchandise into the Chihuahuan desert rather than face the looming tax bill. As a result, the whole home video game industry receded seemingly overnight.

One company single-handedly revived video games to mainstream prominence. That company was Nintendo. They’re ostensibly seen as the “savior” of the video games industry, despite the fact that microcomputer games were still thriving (history tends to be written by the victors). Nevertheless their Nintendo Entertainment System (NES) was an innovative console featuring games with scrolling screens, arcade-like sprites. But the tactic they used to avoid repeating the 1983 collapse was to tightly control their market using the Nintendo Seal of Quality.

From the third party developer perspective, Nintendo’s Seal of Quality represented more than just another logo to throw on the box art. It represented what you could and couldn’t do with your business. Those third party licensing agreements dictated the types of games that could be made, the way the games were manufactured, the schedule on which the games shipped to retail, and even the number of games your company could make. From the customer side of things that seal stood for confidence in the product, and Nintendo would go to great lengths to ensure it did just that.

This is the story of how an Atari subsidiary company cracked the hardware security of the original Nintendo and started putting it into their unofficial cartridges.

Continue reading “That Time Atari Cracked The Nintendo Entertainment System”

Home Built Flight Sim Combines Virtual And Actual Reality

Virtual Reality (VR) and actual reality often don’t mix: watch someone play a VR game without seeing what they see and you see a lot of pointless-looking flailing around. [Nerdaxic] may have found a balance that works in this flight sim setup that mixes VR and AR, though. He did this by combining the virtual cockpit controls of his fight simulator with real buttons, knobs, and dials. He uses an HTC Vive headset and a beefy PC to create the virtual side, which is mirrored with a real-world version. So, the virtual yoke is matched with a real one. The same is true of all of the controls, thanks to a home-made control panel that features all of the physical controls of a Cessna 172 Skyhawk.

[Nerdaxic] has released the plans for the project, including his 3D printable knobs for throttle and fuel/air mixture and the design for the wooden panel and assembly that holds all of the controls in the same place as they are in the real thing. He even put a fan in the system to produce a gentle breeze to enhance the feel of sticking your head out of the window — just don’t try that on a real aircraft.

Continue reading “Home Built Flight Sim Combines Virtual And Actual Reality”