An Unexpected Upset In EV Charging Standards

Last November, Tesla open-sourced parts of its charging infrastructure, not-so-humbly unveiling it as the North American Charging Standard (NACS). It’s finally taking off with a number of manufacturers signing on.

Companies launching “standards” based on their previously proprietary technology in opposition to an established alternative usually leads to standards proliferation. However, with recent announcements from Ford, GM, and Rivian that they would begin supporting NACS in their vehicles, it seems a new dominant standard is supplanting CCS (and the all-but-dead CHAdeMO) in North America.

As Tesla already has the most extensive charging network on the continent and has begun opening it up for other EVs, it makes sense that other marques would want to support NACS, if nothing else to satiate customer demand for a dead-simple charging experience. Dongles are annoying enough for plugging in an external monitor. Having to mess with one while handling high-power electrical connections is less than ideal, to say the least.

If you want to add NACS to your own EV project, the standard is here. We’ve discussed some of the different standards before as well as work toward wirelessly charging EVs (besides the inductive charger on the EV1). It certainly seems like the time to get in on the ground floor of an EV charging empire with an army of Charglas.

DingoQuadruped Is A Cheap Canine-Like Robot

Robot humanoids are cool, but also a bit hard to make work as they only have two legs to stand on. Four-legged robots can be a bit more approachable. The Dingo Quadruped aims to be just such an open-source platform for teaching and experimentation purposes.

The robot is based on the Stanford Pupper, a robot platform we’ve discussed previously. It bears a design not dissimilar from the popular Spot robot from Boston Dynamics. Where Spot costs tens of thousands of dollars, though, Dingo is far cheaper, intended for cheap production by students and researchers for less than $1,500.

The robot weighs around 3 kg, and is approximately the size of a shoebox. Control over the robot is via a wireless game controller. Each leg uses three high-torque servo motors, which are elegantly placed to reduce the inertia of the leg itself. A Raspberry Pi runs the show, with an Arduino Nano also onboard for interfacing analog sensors or additional hardware. The chassis itself has a highly modular design, with a focus on making it easy to add additional hardware.

If you want to get started experimenting with quadruped robots, the Dingo might just be the perfect platform for you. Video after the break.

Continue reading “DingoQuadruped Is A Cheap Canine-Like Robot”

Blood Pressure Monitor For Under $1

Medical equipment is not generally known for being inexpensive, with various imaging systems usually weighing in at over a million dollars, and even relatively simpler pieces of technology like digital thermometers, stethoscopes, and pulse oximeters coming in somewhere around $50. As the general pace of technological improvement continues on we expect marginal decreases in costs, but every now and then a revolutionary piece of technology will drop the cost of something like a blood pressure monitor by over an order of magnitude.

Typically a blood pressure monitor involves a cuff that pressurizes against a patient’s arm, and measures the physical pressure of the blood as the heart forces blood through the area restricted by the cuff. But there are some ways to measure blood pressure by proxy, instead of directly. This device, a small piece of plastic with a cost of less than a dollar, attaches to a smartphone near the camera sensor and flashlight. By pressing a finger onto the device, the smartphone uses the flashlight and the camera in tandem to measure subtle changes in the skin, which can be processed in an app to approximate blood pressure.

The developers of this technology note that it’s not a one-to-one substitute for a traditional blood pressure monitor, but it is extremely helpful for those who might not be able to afford a normal monitor and who might otherwise go undiagnosed for high blood pressure. Almost half of adults in the US alone have issues relating to blood pressure, so just getting information at all is the hurdle this device is attempting to overcome. And, we’ll count it as a win any time medical technology becomes more accessible, more inexpensive, or more open-source.

An image of two dogs and a bison wearing harnesses with the energy harvesting system. Text next to the animals says Dog 1 (Exp. 1), Dog 2 (Exp. 2), Dog 2 (Exp. 3), and Wisent (Exp. 4)

Kinefox Tracks Wildlife For A Lifetime

Radio trackers have become an important part of studying the movements of wildlife, but keeping one running for the life of an animal has been challenging. Researchers have now developed a way to let wildlife recharge trackers via their movements.

With trackers limited to less than 5% of an animal’s total mass to prevent limitations to the their movement, it can be especially difficult to fit trackers with an appropriately-sized battery pack to last a lifetime. Some trackers have been fitted with solar cells, but besides issues with robustness, many animals are nocturnal or live in dimly-lit spaces making this solution less than ideal. Previous experiments with kinetically-charged trackers were quite bulky.

The Kinefox wildlife tracking system uses an 18 g, Kinetron MSG32 kinetic energy harvesting mechanism to power the GPS and accelerometer. Similar to the mechanical systems found in automatic winding watches, this energy harvester uses a pendulum glued to a ferromagnetic ring which generates power as it moves around a copper coil. Power is stored in a Li-ion capacitor rated for 20,000 charge/discharge cycles to ensure better longevity than would be afforded by a Li-ion battery. Data is transmitted via Sigfox to a cloud-based database for easy access.

If you want to build one to track your own pets, the files and BOM are available on GitHub. We’ve featured other animal trackers before for cats and dogs which are probably also applicable to bison.

Reliable 3D Printing With Ceramic Slurry

3D printing is at its most accessible (and most affordable) when printing in various plastics or resin. Printers of this sort are available for less than the cost of plenty of common power tools. Printing in materials other than plastic, though, can be a bit more involved. There are printers now for various metals and even concrete, but these can be orders of magnitude more expensive than their plastic cousins. And then there are materials which haven’t really materialized into a viable 3D printing system. Ceramic is one of those, and while there are some printers that can print in ceramic, this latest printer makes some excellent strides in the technology.

Existing technology for printing in ceramic uses a type of ceramic slurry as the print medium, and then curing it with ultraviolet light to solidify the material. The problem with ultraviolet light is that it doesn’t penetrate particularly far into the slurry, only meaningfully curing the outside portions. This can lead to problems, especially around support structures, with the viability of the prints. The key improvement that the team at Jiangnan University made was using near-infrared light to cure the prints instead, allowing the energy to penetrate much further into the material for better curing. This also greatly reduces or eliminates the need for supports in the print.

The paper about the method is available in full at Nature, documenting all of the details surrounding this new system. It may be a while until this method is available to a wider audience, though. If you can get by with a print material that’s a little less exotic, it’s not too hard to get a metal 3D printer, as long as you are familiar with a bit of electrochemistry.

Closeup of an Apple ][ terminal program. The background is blue and the text white. The prompt says, "how are you today?" and the ChatGPT response says, "As an AI language model, I don't have feelings, but I am functioning optimally. Thank you for asking. How may I assist you?"

Apple II – Now With ChatGPT

Hackers are finding no shortage of new things to teach old retrocomputers, and [Evan Michael] has taught his Apple II how to communicate with ChatGPT.

Written in Python, iiAI lets an Apple II access everyone’s favorite large language model (LLM) through the terminal. The program lives on a more modern computer and is accessed over a serial connection. OpenAI API credentials are stored in a file invoked by iiAI when you launch it by typing python3 openai_apple.py. The program should work on any device that supports TTY serial, but so far testing has only happened on [Michael]’s Apple IIGS.

For a really clean setup, you might try running iiAI internally on an Apple II Pi. ChatGPT has also found its way onto Commodore 64 and MS-DOS, and look here if you’d like some more info on how these AI chat bots work anyway.

Continue reading “Apple II – Now With ChatGPT”

They Used To Be A Big Shot, Now Eagle Is No More

There once was a time when to make a PCB in our community was to use CadSoft EAGLE, a PCB design package which neatly filled the entry level of that category with a free version for non-commercial designs. Upgrading it to the commercial version was fairly inexpensive, and indeed that was a path which quite a few designers making the step from hobby project to small production would take.

Then back in 2017, CadSoft were bought by Autodesk, and their new version 8 of the software changed its licensing model from purchase to rental. It became a product with a monthly subscription and an online side, and there began an exodus of users for whom pay-to-play meant too much risk of losing access to their designs. Now six years later the end has come, as the software behemoth has announced EAGLE’s final demise after a long and slow decline. Continue reading “They Used To Be A Big Shot, Now Eagle Is No More”