Building An Archery Mech Suit To Skip Practice

According to legend, King Edward III once said: “If you want to train a longbowman, start with his grandfather.” Consistently making accurate hits with any bow, especially on moving targets, takes many hours of practice. Or, if you’re [Shane Wighton], you can spend a comparable amount of time building, debugging, and rebuilding a robotically-enhanced bow to do it.

The goal was to shoot flying targets out of the air, so [Shane] had to create a system that could track the position of the bow and the target, and automatically adjust the position of the bow and loose the arrow at exactly the right moment to intercept the target. The position tracking was done with the same Optitrack cameras [Shane] used on his robotic basketball hoop, with reflective marking balls on the bow, target, and the release mechanism. The auto-aiming is done with a two-axis rack and pinion mechanism driven by a pair of stepper motors. [Shane] first used the cheapest recurve bow he could find online, which caused accuracy issues likely related to the Archer’s paradox. The setup also made him repeatedly hit himself in the face, because the servo-operated release mechanism would release unexpectedly without having a proper anchor with his draw hand.

[Shane] eventually upgraded to a compound bow, which reduced the tension he had to hold while lining up the shot, but also increased the weight of the system dramatically. This leads him to fully embrace the mech suit look, and use a Steadicam vest to hold the weight of the bow. This finally allowed him to reliably William Tell shots and hit the flying targets.

Whether it’s an all-in-one electronic golf club, an explosive baseball bat, or a robotic pool cue, [Shane] is certainly adept at using impressive engineering skills to compensate for his lack of physical skill, or just his willfully closed eyes. Continue reading “Building An Archery Mech Suit To Skip Practice”

Spiffy Summer Project Sources Solar Sounds From Scraps

[Gijs Gieskes] has a long history of producing electronic art and sound contraptions, and his Zonneliedjes (sunsongs) project is certainly an entertaining perpetuation of his sonic creations. With the stated goal of making music from sunlight, the sunsongs most prominent feature is solar panels.

Although It’s not clear how the photons transform into the rhythmic crashes and random beep-boop sounds, the results are quite satisfying. We have a strong suspicion that the same principals that turn random junk into BEAM robots are at work, maybe with some circuit bending sprinkled on for good measure. One detail we were able to glean from a picture of the device he calls “mobile” was a 40106 oscillator, which [Gijs] has used in previous projects.

The construction style that [Gijs] uses reminds us of the “Manhattan” construction style the amateur radio homebrewing community favors. Squares of copper PCB are glued directly to the back of the solar cells and the circuits are built atop them. Looking carefully at the pictures we can also see what look like cutoff leads, suggesting a healthy amount of experimentation to get the desired results, which we can all relate to.

Be sure to check out the video after the break, and also [Gijs] website. He’s been hacking away at projects such as these for a very long time, and we’ve even featured his projects going back more than 15 years. Thanks for the continued hacks, [Gijs]. We look forward to seeing what you come up with next!

If the terms “BEAM robotics” and “circuit bending” are unfamiliar to your ears (or if a refresh is due), be sure to check out our recent re-introduction to BEAM robotics and our classic “Intro to Circuit Bending” to get acquainted. Continue reading “Spiffy Summer Project Sources Solar Sounds From Scraps”

Robot Pet Is A Chip Off The Old Logic Block

When [Ezra Thomas] needed inspiration for his senior design project, he only needed to look as far as his own robot. Built during his high school years from the classic 1979 Frank DaCosta book “How to Build Your Own Working Robot Pet”, [Ezra] had learned the hard way the many limitations and complexities of the wire wrapped 74xx series logic chips surrounding its 8085 processor.

[Ezra] embarked on a quest to recreate the monstrosity in miniature, calling it Pet on a Chip. Using a modern FPGA chip allows the electronics to shrink by an order of magnitude and provides flexibility for future expansion. Implementing an 8 bit CPU on the amply sized FPGA left plenty of room for a VGA GPU, motor controller, serial UART, and more. Programming the CPU is handled by a custom assembler written in Python.

The results? Twelve times less weight, thirteen times less power draw, better performance, and a lot of room for growth. [Ezra] hints at an I2C bus expansion as well as a higher level programming language to make software development less of a hurdle.

The Pet On A Chip is a wonderfully engineered project and we hope that we’ll be seeing more such from [Ezra] as time goes by. Watch his Pet On A Chip in action in the video below the break.

If [Ezra]’s FPGA escapades have you wondering how to get started, you can check out this introduction to FPGA from the 2019 Hackaday Superconference. And if you have your own FPGA creation to share, please let us know via the Tip Line!

Continue reading “Robot Pet Is A Chip Off The Old Logic Block”

Helicopter Seed Robot Can Also Drop Like A Rock

Whether you know them as samara seeds, maple seeds, or helicopter seeds, most of us know the seeds that spin down to the ground on one or two blades. They have been served as the inspiration for several robotic autorotating gliders, and researchers from the Singapore University of Technology and Design (SUTD) can now also make them dive rapidly on command. Video after the break.

In the previous versions, researchers showed that they were able to steer the SAW (Samara Autorotating Wing) by actuating the trailing edge of the blade with a servo. It takes input from an onboard 3-axis magnetometer and GPS, and adjusts the control surface continuously depending on its orientation to make it fly in the chosen direction. The latest paper (PDF) focuses on the craft’s new ability to switch from autorotation to a rapid dive and back to autorotation. Named the dSAW (diving SAW), it can drop like a rock by changing the control surface angle to almost 90° the wing to stall it. It exits the dive by simply moving the control surface back to the normal autorotation position. The kinetic energy built up during the dive is converted to rotational energy very quickly, which slows its vertical velocity to almost zero for an instant before settling back into its normal glide.

We can certainly see this being useful where the dSAW needs to quickly lose altitude to avoid being pushed off-course by the wind. The video below demonstrates this by dropping three dSAWs from an RC airplane. On command, they spread out, each in its designated direction, and then repeatedly switch between dive and autorotation mode as they descend to the ground. The researchers envision this being used to scatter sensor units over a large area in a controlled fashion from a single aircraft. What would you do with this technology? Let us know below. Continue reading “Helicopter Seed Robot Can Also Drop Like A Rock”

Cablecam Is An Exercise In System Integration

Drones have become the standard for moving aerial camera platforms, but another option that sees use in the professional world are cable cameras. As an exercise in integrating mechanics, electronics, and software, [maxipalay] created his own Cablecam.

Cablecam is build around a pair of machined wood plates, with some pulleys and motor reduction gearing between them. A brushless hobby motor moves the platform along the rope/cable, driven a drone ESC. Since the ESC doesn’t have a reverse function, [maxipalay] used four relays controlled by an Arduino to swap around the connections of two of the motor wires to reverse direction. The main onboard controller is a Raspberry Pi, connected to a camera module mounted on a two-axis gimbal for stabilization. A GPS module was also added for positioning information on long cables.

The base station is built around an Nvidia Jetson Nano connected to a 7″ screen mounted in a plastic case. Video, telemetry and control signals are communicated using the open-source Wifibroadcast protocol. This uses off-the-shelf WiFi hardware in connectionless mode to broadcast UDP packets, and avoids the lengthy WiFi reconnection process every time a connection drops out. The motion of Cablecam can be controlled manually using a potentiometer on the control station, or use the machine vision capabilities of the Jetson to automatically track and follow people.

We’ve seen several cable robots over the years, including a solar-powered sensor platform that resembles a sloth.

Create Large Scale Domino Art With A Robot

Creating large domino art displays is a long and nerve-racking process, where bumping a single domino can mean starting from scratch. To automate the process of creating these displays, a team consisting of [Mark Rober], [John Luke], [Josh], and [Alex Baucom] built the Dominator, a robot capable of laying 100 000 dominos just over 24 hours. Video after the break.

[Mark Rober] had been toying with the idea for a few years, and the project finally for off the ground after [Mark] mentioned it in a talk he gave at the 2019 Bay Area Maker Faire. To pull it off, the team created an entire domino laying system, including an automated loading station, a precision indoor positioning system, and the robot itself. The robot is built around a frame of aluminum extrusions, riding on three omnidirectional wheels driven by precision servo motors. A large tray mounted to the front of the robot can hold and release 300 dominos at a time. The primary controller is a Raspberry Pi 4, which receives positioning information from a Marvelmind indoor positioning system and a downward-facing IR camera that looks for reflective markers on the floor. The loading system uses a conveyor system to feed the different colored dominos to an industrial Kuka robot that drops them down a grid of tubes that can hold multiple layers at once.

Continue reading “Create Large Scale Domino Art With A Robot”

Why Make Coffee When You’re Tired? Let A Robot Do It For You

Like us, [Alberto] doesn’t compromise when it comes to a good cup of coffee. We figure that if he went to an office in the Before Times, he was the type of coworker to bring in their own coffee equipment so as not to suffer the office brew. Or perhaps he volunteered to order the office supplies and therefore got to decide for everyone else. Yep, that’s definitely one way to do it.

But like many of us, he is now operating out of a home office. Even so, he’s got better things to do than stand around pouring the perfect cup of coffee every morning. See, that’s where we differ, [Alberto]. But we do love Cafeino, your automated pour-over machine. It’s so sleek and lovely, and we’re sure it does a much better job than we do by hand — although we enjoy doing the pouring ourselves.

Cafeino is designed to mimic the movements of a trained barista’s hand, because evidently you’re supposed to pour the water in slow, deliberate swirls to evenly cover the grounds. (Our kettle has a chunky spout, so we just sort of wing it.) Cafeino does this by pumping water from an electric kettle and pouring a thin stream of it in circles with the help of two servos.

The three buttons each represent a different recipe setting, which specifies the amount of water, the hand pouring pattern, and the resting times between blooming the grounds and actually pouring the bulk of the water. These recipes are set using the accompanying web app via an ESP32, although the main brain barista is an Arduino Nano. Grab a cup and check out the demo after the break.

Got an old but modern coffee robot lying around? You could turn it into a planter with automated watering.

Continue reading “Why Make Coffee When You’re Tired? Let A Robot Do It For You”