Explore Neural Radiance Fields In Real-time, Even On A Phone

Neural Radiance Fields (NeRF) is a method of reconstructing complex 3D scenes from sparse 2D inputs, and the field has been growing by leaps and bounds. Viewing a reconstructed scene is still nontrivial, but there’s a new innovation on the block: SMERF is a browser-based method of enabling full 3D navigation of even large scenes, efficient enough to render in real time on phones and laptops.

Don’t miss the gallery of demos which will run on anything from powerful desktops to smartphones. Notable is the distinct lack of blurry, cloudy, or distorted areas which tend to appear in under-observed areas of a NeRF scene (such as indoor corners and ceilings). The technical paper explains SMERF’s approach in more detail.

NeRFs as a concept first hit the scene in 2020 and the rate of advancement has been simply astounding, especially compared to demos from just last year. Watch the short video summarizing SMERF below, and marvel at how it compares to other methods, some of which are themselves only months old.

Continue reading “Explore Neural Radiance Fields In Real-time, Even On A Phone”

A dark brown bench suspended between two white and grey rectangular pillars. They are capped in the same brown HDPE material. Aluminum uprights go to a curved solar panel roof that looks somewhat similar to a paragliding chute. The bench is inside a clean-looking workshop with two large toolboxes against a plywood half wall.

Public Power, WiFi, And Shelter

In the US, we’re starting to see some pushback against hostile architecture, and in this vein, [benhobby] built a swanky public power and Wi-Fi access point.

This beautiful piece of infrastructure has 400 watts of solar plugged into 1.2 kWh of battery storage, and can dispense those electrons through any of its 120 VAC, USB-C, or USB-A plugs. The uprights are 3″ aluminum tubing attached to a base consisting of cinder blocks and HDPE panels. Power receptacles are housed in 3D printed enclosures with laser cut acrylic fronts. Three outdoor lights illuminate the stop at night, triggered by a photosensor.

The electronics and battery for the system, including the networking hardware, are in a weatherproof box on each side that can be quickly disconnected allowing field swaps of the hardware. Troubleshooting can then take place back at a workshop. One of the units has already been deployed and has been well-received. [benhobby] reports “There’s one in the wild right now, and it gets plenty of visitors but no permanent tenants.”

Want to see some more interesting hacks for public infrastructure? Check out this self-cooling bus stop, this bus bloom filter, or this public transit display.

NASA Blames Probe Chute Failure On Wire Labels

When NASA’s OSIRIS-REx sample return capsule screamed its way through the upper atmosphere, it marked the first time the space agency had brought material from an asteroid back to Earth. Hundreds of thousands tuned into the September 24th live stream so they could watch the capsule land at the Utah Test and Training Range. But about ten minutes before the capsule was set to touchdown, keen eyed viewers may have noticed something a bit odd — when ground control called out that the vehicle’s drogue parachute was commanded to deploy…nothing seemed to happen.

Now NASA knows why it didn’t work as expected, and it ended up being the sort of Earthly problem that we’d wager a few in this audience have run into themselves from time to time.

Continue reading “NASA Blames Probe Chute Failure On Wire Labels”

How Do You Prove An AI Didn’t Make Your Art?

In the world of digital art, distinguishing between AI-generated and human-made creations has become a significant challenge. Almost overnight, tool sets for generating AI artworks became commonly available to the public, and suddenly, every digital art competition had to contend with potential submissions. Some have welcomed AI, while others demand competitors create artworks by their own hand and no other.

The problem facing artists and judges alike is just how to determine whether an artwork was created by a human or an AI. So what can be done?

Continue reading “How Do You Prove An AI Didn’t Make Your Art?”

Tiny Speaker Busts Past Sound Limits With Ultrasound

Conventional speakers work by moving air around to create sound, but tiny speakers that use ultrasonic frequencies to create pressure and generate sound opens some new doors, especially in terms of maximum achievable volume.

A new design boasts being the first 140 dB, full-range MEMS speaker. But that kind of volume potential has less to do with delivering music at an ear-splitting volume and more to do with performing truly effective noise cancellation even in a small device like earbuds. Cancelling out the jackhammers of the world requires parts able to really deliver a punch, especially in low frequencies. That’s something that’s not so easy to do in a tiny form factor. The new device is the Cypress, from MEMS speaker manufacturer xMEMS and samples are aiming to ship in June 2024.

Combining ultrasonic waves to create audible sound is something we’ve seen show up in different ways, like using an array of transducers to focus sound like a laser beam. Another thing ultrasonics can do is cause sensors in complex electronics to become unhinged from reality and report false readings. Neato!

Robot Goes To Summer Camp

There are a lot of hobby and educational robots that have a similar form factor: a low, wide body with either wheels or tracks for locomotion. When [Alexander Kirilov] wanted to teach a summer robot camp, he looked at several different commercial offerings and found all of them somewhat lacking. His wish list was a neat-looking compact robot that was easy to extend, had various sensors, and would work with Python. Finding nothing to his liking, he set out to make his own, and Yozh robot was born.

The robot certainly looks neat. There is a color TFT display, seven reflective sensors pointing down, two laser time-of-flight sensors facing forward, an IMU, and some LEDs. There are plenty of expansion ports, too. You can check out the code that runs it, too.

Continue reading “Robot Goes To Summer Camp”

Fail Of The Week: This Flash Drive Will NOT Self-Destruct In Five Seconds

How hard can it be to kill a flash drive? Judging by the look of defeat on [Walker]’s face in the video below, pretty darn hard.

To bring you up to speed, and to give the “Mission: Impossible” reference in the title some context, it might be a good idea to look over our earlier coverage of [Walker]’s Ovrdrive project. It started way back in 2022 with the idea that some people might benefit from a flash drive that could rapidly and covertly render the data stored on it, err, “forensically unavailable.” This would require more than just erasing the data, of course, so [Walker] began looking at ways to physically kill a memory chip. First up was a voltage doubler to apply voltage much greater than the absolute maximum rating of 4.6 V for any pin on the chip. That corrupted some files on the flash chip, enough of a win to proceed to a prototype that actually succeeded in releasing the Magic Smoke.

But sadly, that puff of smoke ended up being a fluke. [Walker] couldn’t repeat the result, at least not with the reliability required by people for whom data privacy is literally a life-or-death matter. To increase the odds of a kill, he came up with an H-bridge circuit to reverse the polarity of the memory chip’s supply. Surely that would kill the chip, and from the thermal camera images, it sure looked promising. But apparently, even 167°C isn’t enough to forensically disable the chip, which kind of makes sense from the point of view of reflow survivability.

What’s next for [Walker]? He says he’s going to team up his overvoltage and reverse-polarity methods for one last shot, but after that, he’s about out of reasonable options. Sure, a thermite charge or a vial of superacid would do the trick, but neither is terribly covert. If you’re going to go that way, you might as well just buy a standard flash drive and throw it in the microwave or a blender. And we need to remember that this may be something the drive’s owner needs to do with jack-booted thugs kicking in the door, or possibly at gunpoint. It wouldn’t do to be too conspicuous under such circumstances. That’s why we like the “rapid power cycling” method of triggering the drive’s self-destruct sequence; it could easily be disguised as shaking hands in a stressful situation.

Who knew that memory chips were this robust? Kudos to [Walker] for getting the project as far as he did, and we’re still rooting for him to make it work somehow.

Continue reading “Fail Of The Week: This Flash Drive Will NOT Self-Destruct In Five Seconds”