A Camera That Signs Off Your Pictures

We’ll admit we’ve kicked around the idea of a camera that digitally signs a picture so you could prove it hasn’t been altered and things like the time and place the photo was taken for years. Apparently, products are starting to hit the market, and Spectrum reports on a Leica that, though it will set you back nearly $10,000, can produce pictures with cryptographic signatures.

This isn’t something Leica made up. In 2019, a consortium known as the Content Authenticity Initiative set out to establish a standard for this sort of thing. The founders are no surprise: The New York Times, Adobe, and Twitter. There are 200 companies involved now, although Twitter — now X — has left.

The problem, the post notes, is that software support is limited. There are only a few programs that recognize and process digital signatures. That’ll change, of course, and — we imagine — if you needed to prove the provenance of a photo in court, you’d just buy the right software you needed.

We haven’t dug into the technology, but presumably keeping the private key secure will be very important. The consortium is clear that the technology is not about managing rights, and it is possible to label a picture anonymously. The signature can identify if an image was taken with a camera or generated by AI and details about how it was taken. It also can detect any attempt to tamper with the image. Compliant programs can make modifications, but they will be traceable through the cryptographic record.

Will it work? Probably. Can it be broken? We don’t know, but we wouldn’t bet that it couldn’t without a lot more reading. PDF signatures can be hacked. Our experience is that not much is truly unhackable.

Revive A Sony Vaio P-Series With KiCad’s Background Bitmaps

You might remember that KiCad 7 came out this February, with a multitude of wonderful features. One of them was particularly exciting to see, and the KiCad newsletter even had an animated GIF to properly demo it – a feature called “Background Bitmaps”, which is the ability to add existing board images into your board editor, both front and back, and switch between them as you design the board. With it, you can draw traces, recreate the outline and place connectors over these images, giving you a way to quickly to reproduce everything on an existing PCB! I’ve seen some friends of mine use this feature, and recently, I’ve had a project come up that’s a perfect excuse for me to try it.

By [Yoggy], CC-BY-2.0
Back in 2020, I managed to get a Sony Vaio P from a flea market, for about 20€. It’s a beloved tiny laptop from 2009, now a collectors item, and we’ve covered a few hacks with it! The price was this wonderful only because it was not fit for regular flea market customers – it was in bad condition, with the original DC jack lost and replaced by some Molex-like power connector, no hard drive, and no battery in sight.

In short, something worth selling to a known tinkerer like me, but not particularly interesting otherwise. Nevertheless, about half a year later, when I fed it the desired 10.5 V from a lab PSU and gave the power button a few chances, it eventually booted up and shown me the BIOS menu on the screen! I’ve disassembled and reassembled it a few times, replaced the DC jack with an original one from a different Vaio ultrabook I happened to have parts from, and decided to try to bring it back to original condition.

Continue reading “Revive A Sony Vaio P-Series With KiCad’s Background Bitmaps”

CNC Plus Microscope Plus Game Controller Equals Awesome

What do you get if you strap a microscope onto a CNC and throw in a gaming controller? The answer, according to Reddit user [AskewedBox] is something kind of awesome: you get a microscope that can be controlled with the game controller for easier tracking of tiny creepy-crawlies.

[ASkewedBox] set up this interesting combination of devices, attaching their Adonostar AD246S microscope to the stage of a no-brand 1610 CNC bought off Amazon, then connected the CNC to a computer running Universal G-Code Sender. This great open source program takes the input from an Xbox game controller and uses it to jog the CNC.

With a bit of tweaking, the game controller can now move the microscope, so it can be used to track microbes and other small creatures as they wander around on the slide mounted below the microscope eating each other. The movement of this is surprisingly smooth: the small CNC and a well-mounted microscope means that there seems to be very little wobble or backlash as the microscope moves.

[Askewedbox] hasn’t finished yet, though: in the latest update, he adds a polarizing lens to the setup and mentions that he wants to add focus control to the system, which is controlled by a remote that comes with the microscope.

There are plenty of other things that could be added beyond that, though, such as auto pan and stitch for larger photos, auto focus stacking and perhaps even auto tracking using OpenCV to track the hideous tiny creatures that live in the microscopic realm. What would you do to make this even cooler?

2023 Halloween Hackfest: This Year’s Spooky Winners

With the zombies, ghouls, and ghosts now safely returned to their crypts until next October, it’s time to unveil this year’s winners for the 2023 Halloween Hackfest.

For this contest, sponsors DigiKey and Arduino challenged the community to come up with their best creations for what’s arguably the most hacker-friendly of holidays. Pretty much everything was fair game, from costumes to decorations. The top three winners will get $150 credit from DigiKey and some treats from Arduino — just don’t try to eat them.

Continue reading “2023 Halloween Hackfest: This Year’s Spooky Winners”

What Can You Do With Thousands Of Vintage Telephones?

Telephones. We’ve got a few around the place, and some may remember all the weird and wonderful varieties produced over the years. But, vintage phone dealers [Ron and Mary Knappen] may have a few too many. With a large 41,000 sqft property, at least three farm buildings, and no fewer than 33 semi-trailers loaded to busting with racks of phones, the retiring couple have a job sorting it all out and finding someone passionate enough to take over this once-strong business.

Technology has moved on somewhat since 1971 when they got into the retro business, and there are only so many period dramas being produced that could make a dent in a collection of a thousand steel desk phones. Nobody seems interested in taking on their business, so they are concentrating on emptying that large property in order to sell it, but the fate of the crazy number of other storage locations seems uncertain. Perhaps, other than a few museums around the world purchasing a few, this collection really is likely heading to the recyclers.

So what can we do with a vintage phone in this modern era? Here’s a primer to get you started. How about going cellular? Or maybe just add them to your existing designer collection?

Thanks to [Jeremy] and Adafruit for the tip!

3D Human Models From A Single Image

You’ve seen it in movies and shows — the hero takes a blurry still picture, and with a few keystrokes, generates a view from a different angle or sometimes even a full 3D model. Turns out, thanks to machine learning and work by several researchers, this might be possible. As you can see in the video below, using “shape-guided diffusion,” the researchers were able to take a single image of a person and recreate a plausible 3D model.

Of course, the work relies on machine learning. As you’ll see in the video, this isn’t a new idea, but previous attempts have been less than stellar. This new method uses shape prediction first, followed by an estimate of the back view appearance. The algorithm then guesses what images go between the initial photograph and the back view. However, it uses the 3D shape estimate as a guideline. Even then,  there is some post-processing to join the intermediate images together into a model.

The result looks good, although the video does point out some areas where they still fall short. For example, unusual lighting can affect the results.

This beats spinning around a person or a camera to get many images. Scanning people in 3D is a much older dream than you might expect.

Continue reading “3D Human Models From A Single Image”

How The WS2812 Is Made

[Scotty Allen] of Strange Parts is no stranger to Chinese factory tours, but this one is now our favorite. He visits the font of all WS2812s, World Semi, and takes a good look at the machines that make two million LEDs per day.

The big deal with the WS2812s, and all of the similar addressable LEDs that have followed them, is that they have a logic chip inside the LED that enables all the magic. And that means die-bonding bare-die ICs into each blinky. Watching all of the machines pick, place, glue, and melt bond wire is pretty awesome. Don’t miss the demo of the tape-and-frame. And would you believe that they test each smart LED before they kick it out the door? There’s a machine that clocks some data in and reads it back out the other side.

Do we take the addressable LED for granted today? Probably. But if you watch this video, maybe you’ll at least know what goes into making one, and the next time you’re blinking all over the place, you’ll spill a little for the epoxy-squirting machine. After all, the WS2812 is the LED that prompted us to ask, three years ago, if we could live without one.
Continue reading “How The WS2812 Is Made”