Calculus And A Calculator

Earlier this year, [Dan Maloney] went inside mechanical calculators. Being the practical sort, [Dan] jumped right into the Pascaline invented by Blaise Pascal. It couldn’t multiply or divide. He then went into the arithmometer, which is arguably the first commercially successful mechanical calculator with four functions. That was around 1821 or so. But [Dan] mentions it used a Leibniz wheel. I thought, “Leibniz? He’s the calculus guy, right? He died in 1716.” So I knew there had to be at least a century of backstory to get to the arithmometer. Having a rainy day ahead, I decided to find out exactly where the Leibniz wheel came from and what it was doing for 100 years prior to 1821.

If you’ve taken calculus you’ve probably heard of Gottfried Wilhelm Leibniz (who would have been 372 years old on July 1st, by the way). He’s the guy that gave us the notation we use in modern calculus and oddly was one of two people who apparently figured out calculus, the other being Issac Newton. Both men, by the way, accused each other of stealing, although it is more likely they both built on the same prior work. When you are struggling to learn calculus, it is sometimes amazing that not only did someone think it up, but two people thought it up at one time. However, Leibniz also built what might be the first four function calculator in 1694. His “stepped reckoner” used a drum and some cranks and the underlying mechanism found inside of it lived on until the 1970s in other mechanical calculating devices. Oddly, Leibniz didn’t use the term stepped reckoner but called the machine Instrumentum Arithmeticum.

Many of us remember when a four function electronic calculator was a marvel and not even very inexpensive. Nowadays, you’d have to look hard to find one that only had four functions and simple calculators are cheap enough to give away like ink pens. But in 1694, you didn’t have electronics and integrated circuits necessary to pull that off.

Continue reading “Calculus And A Calculator”

Spy Tech: How An Apollo Capsule Landed In Michigan After A Layover In The USSR

There’s an Apollo module on display in Michigan and its cold-war backstory is even more interesting than its space program origins.

Everyone who visits the Van Andel Museum Center in Grand Rapids, Michigan is sure to see the Apollo Command Module flanking the front entrance. Right now it’s being used as a different kind of capsule: a time capsule they’ll open in 2076 (the American tricentennial). If you look close though, this isn’t an actual Command Module but what they call a “boilerplate.”

Technically, these were mass simulators made cheaply for certain tests and training purposes. A full spacecraft costs a lot of money but these — historically made out of boilerplate steel — could be made with just the pieces necessary and using less expensive materials. What you might not know is that the boilerplate at the Van Ardel — BP 1227 — has a cold war spy history unlike any other boilerplate in the fleet.

The early life of BP 1227 is a little sketchy. It appears the Navy was using it for recovery training somewhere between the Azores and the Bay of Biscay in early 1969. We don’t know for sure if the picture to the left is BP 1227 or not. Comparing it to the one at the museum, it probably isn’t, but then again the museum’s does have a fresh paint job and possibly a top cap. Regardless, the picture to the left was from 1966 in the Atlantic, giving us an idea of how boilerplate capsules were put into service.

In those days — the height of the cold war — Naval ships were often followed by Soviet “fishing trawlers.” These were universally understood to be spy ships — Auxiliary, General Intelligence or AGI vessels.

Continue reading “Spy Tech: How An Apollo Capsule Landed In Michigan After A Layover In The USSR”

Federico Faggin: The Real Silicon Man

While doing research for our articles about inventing the integrated circuit, the calculator, and the microprocessor, one name kept popping which was new to me, Federico Faggin. Yet this was a name I should have known just as well as his famous contemporaries Kilby, Noyce, and Moore.

Faggin seems to have been at the heart of many of the early advances in microprocessors. He played a big part in the development of MOS processors during the transition from TTL to CMOS. He was co-creator of the first commercially available processor, the 4004, as well as the 8080. And he was a co-founder of Zilog, which brought out the much-loved Z80 CPU. From there he moved on to neural networking chips, image sensors, and is active today in the scientific study of consciousness. It’s time then that we had a closer look at a man who’s very core must surely be made of silicon.

Continue reading “Federico Faggin: The Real Silicon Man”

Books You Should Read: Sunburst And Luminary, An Apollo Memoir

The most computationally intense part of an Apollo mission was the moon landing itself, requiring both real-time control and navigation of the Lunar Module (LM) through a sequence of programs known as the P60’s. Data from radar, inertial navigation, and optical data sighted-off by the LM commander himself were fed into the computer in what we’d call today ‘data fusion.’

The guy who wrote that code is Don Eyles and the next best thing to actually hanging out with Don is to read his book. Don’s book reads as if you are at a bar sitting across the table listening to his incredible life story. Its personal, hilarious, stressful, fascinating, and more importantly for those of us who are fans of Hackaday, it’s relatable.

Continue reading “Books You Should Read: Sunburst And Luminary, An Apollo Memoir”

Hair-Raising Tales Of Electrostatic Generators

We tend to think of electricity as part of the modern world. However, Thales of Mietus recorded information about static electricity around 585 BC.  This Greek philosopher found that rubbing amber with fur would cause the amber to attract lightweight objects like feathers. Interestingly enough, a few hundred years later, the aeolipile — a crude steam engine sometimes called Hero’s engine — appeared. If the ancients had put the two ideas together, they could have invented the topic of this post: electrostatic generators. As far as we know, they didn’t.

It would be 1663 before Otto von Guericke experimented with a sulfur globe rubbed by hand. This led to Isaac Newton suggesting glass globes and a host of other improvements from other contributors ranging from a woolen pad to a collector electrode. By 1746, William Watson had a machine consisting of multiple glass globes, a sword, and a gun barrel. Continue reading “Hair-Raising Tales Of Electrostatic Generators”

The Flight Of The Seagull: Valentina Tereshkova, Cosmonaut

That the Cold War was a tense and perilous time in history cannot be denied, and is perhaps a bit of an understatement. The world stood on the edge of Armageddon for most of it, occasionally stepping slightly over the line, and thankfully stepping back before any damage was done.

As nerve-wracking as the Cold War was, it had one redeeming quality: it turned us into a spacefaring species. Propelled by national pride and the need to appear to be the biggest kid on the block, the United States and the Soviet Union consistently ratcheted up their programs, trying to be the first to make the next major milestone. The Soviets made most of the firsts, making Sputnik and Gagarin household names all over the world. But in 1962, they laid down a marker for a first of epic proportions, and one that would sadly stand alone for the next 19 years: they put the first woman, Valentina Tereshkova, into space.

Continue reading “The Flight Of The Seagull: Valentina Tereshkova, Cosmonaut”

Hacking When It Counts: The Magnetron Goes To War

In 1940, England was in a dangerous predicament. The Nazi war machine had been sweeping across Europe for almost two years, claiming countries in a crescent from Norway to France and cutting off the island from the Continent. The Battle of Britain was raging in the skies above the English Channel and southern coast of the country, while the Blitz ravaged London with a nightly rain of bombs and terror. The entire country was mobilized, prepared for Hitler’s inevitable invasion force to sweep across the Channel and claim another victim.

We’ve seen before that no idea that could possibly help turn the tide was considered too risky or too wild to take a chance on. Indeed, many of the ideas that sprang from the fertile and desperate minds of British inventors went on to influence the course of the war in ways they could never have been predicted. But there was one invention that not only influenced the war but has a solid claim on being its key invention, one without which the outcome of the war almost certainly would have been far worse, and one that would become a critical technology of the post-war era that would lead directly to innovations in communications, material science, and beyond. And the risks taken to develop this idea, the cavity magnetron, and field usable systems based on it are breathtaking in their scope and audacity. Here’s how the magnetron went to war.

Continue reading “Hacking When It Counts: The Magnetron Goes To War”