All Aboard The Garbage Express

Cog railways are a somewhat unusual way of train locomotion, typically only installed when a train needs to climb steep terrain. Any grade above about 10% needs the extra traction since the friction between the wheels and rails won’t be enough to push the train forward or keep it from falling backwards. Even without a steep hill to climb, sometimes a cog railway is necessary for traction as [Max Maker] discovered while building a train for his garbage cans.

The build started out as a way to avoid having to wheel his seven waste bins to the curb every month. Originally he built a more standard railway with a simple motor to drive the train, but he quickly realized that there wasn’t enough grip even when using plastic wheels, even though this track follows fairly flat terrain. Since the rail is built out of steel he quickly welded up a rack-and-pinion system to one of the rails. The build goes through many iterations before he finally settles on a design that solves the problem, and it includes several other features as well such as remote control and a spring-loaded automatic charger for the train at its station in the back yard.

While we always appreciate the eccentricity of those who would automate a relatively simple task that only happens once a month, [Max Maker] hopes to build this into a commercial product aimed at the elderly or disabled who would really benefit from a reliable, semi-automatic system that takes their trash bins to the curb for them. And, if your system only involves a single trash can, there are other ways of automating the task of taking the garbage to the curb.

Continue reading “All Aboard The Garbage Express”

A simple wooden chair with mint metallic connectors at the corners sits next to a pile of wooden pieces wrapped in leather and straps to form a backpack.

A Nomadic Chair

There’s no shortage of different types of folding or portable chairs, but designer [Jorge Penadés] built a backpack chair that will go the long haul.

Furniture that assembles without screws or glue is always intriguing, and this chair fits the bill. Using simple metal connectors and joinery, it can be setup and taken down in about two minutes without the flimsy feeling of a bag chair. With a natural finish on the wood, the connectors give a nice pop of color without feeling overwhelming. There are even some pictures of a couch version if you follow the link.

In backpack mode, the pieces are held together by leather patches and ratchet straps. [Penadés] was focused on portability over comfort with this piece, but we think this connection method could be used in the future for more comfortable furniture that is still portable.

If you’re looking for more interesting furniture, checkout this Tambour Table with a Puzzling Secret or these CNC-able Seats.

Continue reading “A Nomadic Chair”

Connecting Commercial 433 MHz Sensors To MQTT And Home Assistant With RTL-SDR

When [Elixir of Progress] was looking at setting up environmental sensors around their home to keep track of temperature, humidity and such, the obvious ideas of using WiFi-connected sensors didn’t work due to lack of WiFi range. Although Zigbee (Z-wave) sensors have longer range than WiFi, they are decidedly more expensive, proprietary and require a special transceiver hub. That’s where 433 MHz sensors for weather stations come into the picture.

The idea is simple: virtually all of those sensors – many of them rated for outdoor use – use the unlicensed 433 MHz spectrum that can easily be captured using cheap RTL-SDR (software defined radio) USB dongles. With the data stream from these sensors captured, the open source rtl_433 project enables automatic decoding of these data streams for a wide range of supported sensors.

While Realtek RTL2832-based and other RTL-SDRs can be found for quite cheap, it should be noted that these can run quite hot. Rather than heatsinking the IC, for this project it was elected to only listen sporadically and allow the RTL-SDR receiver to cool down in between listening sessions.

Getting the data from there into Home Assistant, InfluxDB or similar is easy, as rtl_433 can output the decoded data directly to an Influx database, MQTT broker as well as other formats. In this case, the data was sent via MQTT with the Home Assistant instance configured to treat these MQTT topics as sensors. With each sensor’s location carefully registered, this allows for setting up a dense, very low-power network of 433 MHz sensors for monitoring and home automation purposes.

Laser Cut Clips Save A Lamp From The Trash

Ikea have been known for years as a purveyor of inexpensive  yet stylish homewares, but it’s fair to say that sometimes their affordability is reflected in their insubstantial construction. Such is the case with the Sjöpenna lamp, whose construction relies on rubber bands. On [Tony]’s lamp these bands degraded with age, causing it to fall apart. The solution? A set of cleverly-designed laser-cut clips to replace them.

The challenge to replacing a stretchy material with a rigid one is that it must have enough ability to bend without snapping as it is put in place. For this he selected PETG, with 0.04″ (about 1 mm thick) hitting the sweet spot. His photos demonstrate with some green tape added for visibility, how the clip bends backwards just far enough to fit over where the rubber band once located, and then flips back neatly to hold it all in place.

If you have a collapsing Ikea lamp then this will be just what you need, but this hack goes further than that. A frequent requirement for repairs is some kind of clip, because clips are always the first to break, This technique for laser cutting them is a handy one to remember, next time your design needs a springy bit of plastic.

GitHub ESP32 OTA Updates, Now In MicroPython Flavor

Wouldn’t it be great if you could keep all of your small Internet-connected hacks up to date with a single codebase? A couple of weeks ago, we wrote up a project that automagically pulls down OTA updates to an ESP32 from GitHub, using the ESP32 C SDK. [Pascal] asked in the comments, “but what about MicroPython?” Gauntlet thrown, [TURFPTAx] wrote ugit.pya simple library that mirrors all of the code from a public GitHub Python repo straight to your gizmo running Micropython.

[Damped] wrote in about Senko, another library that does something very similar, but by then [TURFPTAx] was already done. Bam! Part of the speed is that MicroPython includes everything you need to get the job done – parsing streamed JSON was the hard part with the original hack. MicroPython makes those sorts of things easy.

This is one of those ideas that’s just brilliant for a hacker with a small flock of independent devices to herd. And because ugit.py itself is fairly simple and readable, if you need to customize it to do your own bidding, that’s no problem either. Just be sure that when you’re storing your WiFi authentication info, it’s not publicly displayed. ([TURFPTAx], could I log into your home WiFi?)

What’s [TURFPTAx] going to be using this for? We’re guessing it’s going to be deploying code to his awesome Open Muscle sensing rigs. What will we be using it for? Blinky Christmas decorations for the in-laws, now remotely updatable without them having to even learn what a “repo” is.

Continue reading “GitHub ESP32 OTA Updates, Now In MicroPython Flavor”

Snail Mail Notifier’s Simple Power Management To Maximize Battery Life

There are no weird, specialized components nor esoteric sleep mode tricks behind the long battery life of [Zak]’s WiFi mail slot watcher. Just some sensible design and clever focus on the device’s purpose: to send an HTTP request whenever it detects that the front door’s mail slot has been opened. The HTTP request is what kicks off useful notifications, but it’s the hardware design that’s really worth a peek.

The watcher’s main components are a ESP-M2 WiFi module, a reed switch, and a single lithium cell. Here’s how it works at a high level: when the mail slot is opened (detected by the reed switch), the ESP module is powered up just long enough to connect to the local WiFi network and send a single HTTP request, after which it shuts back down. The whole process takes between four and ten seconds.

As mentioned, the power control isn’t managed by any unusual components; it comes down to a NAND gate with a single inverted input, and a MIC5504 3.3 V regulator responsible for feeding the ESP board. The logic gate controls whether the voltage regulator is enabled or disabled, and therefore whether the microcontroller receives any power at all. Most of the time the regulator is disabled, but when the reed switch triggers, its input to the NAND gate is pulled low and the regulator is turned on, booting up the ESP board.

In order to stay on, the first thing the ESP board does is use a GPIO pin to drive the inverted input of the NAND gate high in order to keep the regulator enabled, and it has a window of about half a second to do this. Once the HTTP request is sent (and the battery voltage sensed), the ESP board pulls that pin low, disabling the regulator and turning itself off until the reed switch once again begins the process.

After seven months of use, the battery has dropped from 4.2 V to 3.9 V, so there’s plenty of life left. The project’s GitHub repository has the necessary code if you’d like to apply some of its ideas to your own projects. Alternately, you may wish to consider supercapacitors and solar in lieu of batteries. Even if ultra-level power savings isn’t your bag, when WiFi and networking is involved, there are software-level opportunities to be more efficient. Even a judicious 1 ms delay can save a surprising amount of power in the right circumstances.

Fixing (And Improving!) An Annoying Apartment Entry System

[Zak]’s two-floor apartment has a typical door entry control system, but the setup is less than ideally convenient. The wall-mounted telephone-like intercom is downstairs, but [Zak] is usually upstairs. What’s an enterprising hacker to do? Obviously the most elegant solution is to simply do without visitors in the first place, but [Zak] opted for a more full-featured solution to the problem.

The layout of the typical wall-mounted door intercom is less than ideal.

He fixed things with a custom ESP8285-based board that, with the help of opto-isolation, allows him to detect visitors and grant entry without having to be physically present at the wall-mounted intercom. It’s even integrated into Telegram, and has a few neat new features. Let’s take a look.

The first interesting bit is how [Zak] rolled his own opto-isolation. The door entry system uses 14 VAC and is frankly — electromagnetically-speaking — a very noisy device. Attaching GPIO pins directly to this system from the ESP board for interfacing is not an option. The solution in situations like this is to use opto-isolation, so that interfaced devices can be electrically isolated from one another.

Rather than use off-the-shelf options, [Zak] opted to keep things small and economical by rolling his own solution using side-mounted IR LEDs on the small interface PCB. LEDs can also act as photodiodes, so by pointing two LEDs directly at one another and driving one LED from the door control system and measuring the small amount of resulting current on the other LED, [Zak] can detect states without having to directly connect a GPIO pin.

Continue reading “Fixing (And Improving!) An Annoying Apartment Entry System”