As much as we love Star Trek, we have to admit there are some continuity problems. For example, in Spock’s Brain, the alien-of-the-week’s ion drive gave Scotty engineering envy. However, in The Menagerie, the computer identifies a Starfleet shuttlecraft as having ion propulsion. Either way, ion propulsion is real and NASA has toyed with it for ages and many satellites use it for maintaining orbit. Now researchers from MIT and the Monterrey Institute of Technology and Higher Studies 3D printed tiny ion engines.
The engine is about the size of a dime and, like all ion engines, produces tiny amounts of thrust. In fact, the researchers liken it to half the weight of one sesame seed from a hamburger bun. However, in space, these tiny thrusts add up and over time can produce significant acceleration.
Humans have unfortunately not yet evolved the ability to photosynthesize or recharge from an electricity source, which is why astronauts well into the future of spaceflight will need to have access to food sources. Developing ways to grow food in space is the focus of the new Deep Space Food Challenge that was just launched by NASA and Canada’s Space Agency (CSA).
With a total of twenty $25,000 USD prizes for US contestants and ten $30,000 CAD prizes for the Canucks in Phase 1 of the challenge, there’s some financial incentive as well. In Phase 2, the winning teams of the concept phase have to show off their kitchen skills, and in the final Phase 3 (deadline by Fall 2023) the full food growing system has to be demonstrated.
The possible systems here would likely involve some kind of hydroponics, aeroponics or even aquaponics, to save the weight of lugging kilograms of soil into space. None of this is truly new technology, but cramming it into a package that would be able to supply a crew of four with enough food during a three-year mission does seem fairly challenging.
The NASA rules are covered in their Phase 1 Rules PDF document. While international teams are also welcome to compete, they cannot receive any prizes beyond recognition, and Chinese citizens or companies with links to China are not to allowed to compete at all.
The January 16th “Green Run” test of NASA’s Space Launch System (SLS) was intended to be the final milestone before the super heavy-lift booster would be moved to Cape Canaveral ahead of its inaugural Artemis I mission in November 2021. The full duration static fire test was designed to simulate a typical launch, with the rocket’s main engines burning for approximately eight minutes at maximum power. But despite a thunderous start start, the vehicle’s onboard systems triggered an automatic abort after just 67 seconds; making it the latest in a long line of disappointments surrounding the controversial booster.
When it was proposed in 2011, the SLS seemed so simple. Rather than spending the time and money required to develop a completely new rocket, the super heavy-lift booster would be based on lightly modified versions of Space Shuttle components. All engineers had to do was attach four of the Orbiter’s RS-25 engines to the bottom of an enlarged External Tank and strap on a pair of similarly elongated Solid Rocket Boosters. In place of the complex winged Orbiter, crew and cargo would ride atop the rocket using an upper stage and capsule not unlike what was used in the Apollo program.
The SLS core stage is rolled out for testing.
There’s very little that could be called “easy” when it comes to spaceflight, but the SLS was certainly designed to take the path of least resistance. By using flight-proven components assembled in existing production facilities, NASA estimated that the first SLS could be ready for a test flight in 2016.
If everything went according to schedule, the agency expected it would be ready to send astronauts beyond low Earth orbit by the early 2020s. Just in time to meet the aspirational goals laid out by President Obama in a 2010 speech at Kennedy Space Center, including the crewed exploitation of a nearby asteroid by 2025 and a potential mission to Mars in the 2030s.
But of course, none of that ever happened. By the time SLS was expected to make its first flight in 2016, with nearly $10 billion already spent on the program, only a few structural test articles had actually been assembled. Each year NASA pushed back the date for the booster’s first shakedown flight, as the project sailed past deadlines in 2017, 2018, 2019, and 2020. After the recent engine test ended before engineers were able to collect the data necessary to ensure the vehicle could safely perform a full-duration burn, outgoing NASA Administrator Jim Bridenstine said it was too early to tell if the booster would still fly this year.
What went wrong? As commercial entities like SpaceX and Blue Origin move in leaps and bounds, NASA seems stuck in the past. How did such a comparatively simple project get so far behind schedule and over budget?
When the Space Shuttle Atlantis rolled to a stop on its final mission in 2011, it was truly the end of an era. Few could deny that the program had become too complex and expensive to keep running, but even still, humanity’s ability to do useful work in low Earth orbit took a serious hit with the retirement of the Shuttle fleet. Worse, there was no indication of when or if another spacecraft would be developed that could truly rival the capabilities of the winged orbiters first conceived in the late 1960s.
While its primary function was to carry large payloads such as satellites into orbit, the Shuttle’s ability to retrieve objects from space and bring them back was arguably just as important. Throughout its storied career, sensitive experiments conducted at the International Space Station or aboard the Orbiter itself were returned gently to Earth thanks to the craft’s unique design. Unlike traditional spacecraft that ended their flight with a rough splashdown in the open ocean, the Shuttle eased itself down to the tarmac like an airplane. Once landed, experiments could be quickly unloaded and transferred to the nearby Space Station Processing Facility where science teams would be waiting to perform further processing or analysis.
Atlantis is towed from the runway for payload processing.
For 30 years, the Space Shuttle and its assorted facilities at Kennedy Space Center provided a reliable way to deliver fragile or time-sensitive scientific experiments into the hands of researchers just a few hours after leaving orbit. It was a valuable service that simply didn’t exist before the Shuttle, and one that scientists have been deprived of ever since its retirement.
Until now. With the successful splashdown of the first Cargo Dragon 2 off the coast of Florida, NASA is one step closer to regaining a critical capability it hasn’t had for a decade. While it’s still not quite as convenient as simply rolling the Shuttle into the Orbiter Processing Facility after a mission, the fact that SpaceX can guide their capsule down into the waters near the Space Coast greatly reduces the time required to return experiments to the researchers who designed them.
As large sections of the globe have seen themselves plunged into further resurgences of the pandemic over the past few weeks there has been no let-up in the world of space exploration even for the Christmas holidays, so here we are with another Spacing Out column in which we take a look at what’s going up, what’s flying overhead, and what’s coming down.
Not today, Paul. r2hox from Madrid, Spain, CC BY-SA 2.0.
December was eventful, with China returning lunar samples and Japan doing the same with asteroid dust. And it was reported that we might just possibly have detected radio waves from ET. The truth may be out there and we sincerely want to believe, but this widely reported signal from Proxima Centauri probably isn’t the confirmation of alien life we’ve all been waiting for.
There has been no shortage of launches over the last month from the usual agencies and companies, with a first launch from China of their Long March 8 heavy lift rocket from the Wenchang launch site in Hainan Province. Its payload of five satellites made it safely to orbit, and we expect the rocket will be a workhorse of their future exploration programme. Meanwhile SpaceX conducted a high-altitude test of their Starship SN8 vehicle, which proceeded according to plan until the craft was approaching the landing pad, at which point the failure of one of its engines to fire caused a spectacular crash. This does not equate to an unsuccessful test flight as it performed faultlessly in the rest of its manoeuvres, but it certainly made for some impressive video.
On the subject of SpaceX and Starship, Elon Musk has said he will sell all his personal property to fund a Martian colony. This will require a fleet of up to 1000 Starships, with three launches a day to ferry both colonists and supplies to the Red Planet. He attracted controversy though by saying that interplanetary immigration would be open to people of all means with loans available for the estimated $50,000 one-way travel cost, and Martian jobs on offer to enable the debt to be paid. Many critics replied to his Tweets likening the idea to indentured servitude. It’s worth remembering that Musk is the master of the grand publicity stunt, and while it seems a good bet that SpaceX will indeed reach Mars, it’s also not inconceivable that his timeline and plans might be somewhat optimistic.
A more tangible story from SpaceX comes in their super heavy booster rocket, which is to be reusable in the same manner as their existing Falcon 9, but not landing on its own legs in the manner of the earlier rocket. It will instead dock with its launch tower, being caught by the same support structures used to stabilise it before launch. At first glance this might seem too difficult to succeed, but no doubt people expressed the same doubts before the Falcon 9s performed their synchronised landings.
Finally away from more troubling developments in the political field, The Hill takes a look at some of those likely to have a hand in providing a commercial replacement for the ISS when it eventually reaches the end of its life. They examine the likely funding for NASA’s tenancy on the station, and looked at the cluster of Texas-based companies gearing up for space station manufacture. That’s right — space station modules from the likes of Axiom Space will become a manufactured assembly rather than one-off commissions. The decades beyond the ISS’s current 2030 projected end of life are likely to have some exciting developments in orbit.
The coming year is likely to be an exciting one, with a brace of missions heading to Mars for February as well as a new space station to catch our attention. The Chinese aren’t content to stop at the Moon, with their Tianwen-1 Mars mission due to start exploring our planetary neighbour, and the first Tianhe module of what will become their much larger space station taking to the skies in the coming year. Meanwhile the Red planet will see NASA’s Perseverance rover also reaching its surface, taking with it the Ingenuity helicopter. Finally, the United Arab Emirates’ Hope probe will go into orbit, making the second month one that should have plenty of news.
Wherever you are, keep yourself safe from Earth-bound viruses, and keep looking at the skies in 2021.
If you watched the original Star Trek series, you’d assume there was no way the Federation would ever work with the Klingons. But eventually the two became great allies despite their cultural differences. There was a time when it seemed like the United States and Russia would never be friends — as much as nations can be friends. Yet today, the two powers cooperate on a number of fronts.
One notable area of cooperation is in spaceflight, and that also was one of the first areas where the two were able to get together in a cooperative fashion, meeting for the first time in orbit, 135 miles up. The mission also marks the ultimate voyage of the Apollo spacecraft, a return to space for the USSR’s luckiest astronauts, and the maiden flight of NASA’s oldest astronaut. The ability to link US and Soviet capsules in space would pave the way for the International Space Station. The Apollo-Soyuz mission was nothing if not historic, but also more relevant than ever as more nations become spacefaring. Continue reading “The Day The Russians And Americans Met 135 Miles Up”→
Wood’s place in high-technology has a long track record. During World War 2, wooden boats were used for minesweepers, the Spruce Goose was designed to circumvent wartime material restrictions, and Britain’s plywood-built De Havilland Mosquito had a very low radar cross section. In this century, a man in Bosnia has even built a Volkswagen Beetle out of oak.
The newly-announced aerospace project, led by retired astronaut and engineer Prof Takao Doi, plans to launch satellites built from wood in order to reduce space debris and hazardous substances resulting from re-entry. We’re somewhat skeptical on the hazardous substances angle (and we’re not alone in this), but certainly as a way to help ensure complete burn up upon re-entry, wood is an interesting material. It also achieves a great strength to weight ratio and as a renewable resource it’s easy to source.
Prof Doi has been studying the use of wood in space for several years now. Back in 2017 he began basic research on the usability of timbers in space (pg 16), where his team experimented with coniferous (cedar and cypress) and hardwood (satinwood, magnolia, and zelkova) trees in vacuum environments. Based on successes, they predicted wooden satellite launches in the mid 2020s (their announcement this month said 2023). Sumitomo engineers have not released what kind of wood(s) will finally be used on the satellite.
You might remember Astronaut Doi from an experiment aboard the ISS where he successfully demonstrated flying a boomerang in space (video below), and he’s also discovered two supernovae in his spare time. We wish him good luck.