Global Thermonuclear War: Tweeted

[Andreas Spiess] did a video earlier this year about fallout shelters. So it makes sense now he’s interested in having a Geiger counter connected to the network. He married a prefabricated counter with an ESP32. If it were just that simple, it wouldn’t be very remarkable, but [Andreas] also reverse-engineered the schematic for the counter and discusses the theory of operation, too. You can see the full video, below.

We often think we don’t need a network-connected soldering iron or toaster. However, if you have a radiological event, getting a cell phone alert might actually be useful. Of course, if that event was the start of World War III, you probably aren’t going to get the warning, but a reactor gas release or something similar would probably make this worth the $50.

Continue reading “Global Thermonuclear War: Tweeted”

Fighting Machine Tool Chatter With A 555 Timer

Vibration is a fact of life in almost every machining operation. Whether you’re milling, drilling, turning, or grinding, vibration can result in chatter that can ruin a part. Fighting chatter has generally been a matter of adding more mass to the machine, but if you’re clever about things, chatter reduction can be accomplished electronically, too. (YouTube, embedded below.)

When you know a little something about resonance, machine vibration and chatter start to make sense. [AvE] spends quite a bit of time explaining and demonstrating resonance in the video — fair warning about his usual salty shop language. His goal with the demo is to show that chatter comes from continued excitation of a flexible beam, which in this case is a piece of stock in the lathe chuck with no tailstock support. The idea is that by rapidly varying the speed of the lathe slightly, the system never spends very long at the resonant frequency. His method relies on a variable-frequency drive (VFD) with programmable IO pins. A simple 555 timer board drives a relay to toggle the IO pins on and off, cycling the VFD up and down by a couple of hertz. The resulting 100 RPM change in spindle speed as the timer cycles reduces the amount of time spent at the resonant frequency. The results don’t look too bad — not perfect, but a definite improvement.

It’s an interesting technique to keep in mind, and a big step up from the usual technique of more mass.

Continue reading “Fighting Machine Tool Chatter With A 555 Timer”

Tape Cutting Bot Trims The Tedium

If you have ever had to assemble a batch of electronic kits, you will know the tedious nature of cutting the tape containing your components. It’s easy enough to count four or five surface-mount resistors and snip them off with a pair of scissors once or twice, but when you are faced with repeating the task a hundred or more times, its allure begins to pale.

[Overflo] faced just such a problem when assembling hundreds of kits for a workshop at the upcoming 34C3 event in Germany. The solution? A tape-cutting robot, of course! (YouTube video, embedded below.)

At the heart of the machine is a pair of scissors operated by a stepper motor, snipping away at the component tape fed by another stepper. An infra-red light barrier sensor counts sprocket holes, and the whole is under the control of an Arduino Pro Mini. An especially clever trick is that the strip passes over a marker pen, allowing different components in a kit to be identified by a color code.

This isn’t the first such approach to this problem we’ve encountered, here’s one that cuts component tape with a laser.

Continue reading “Tape Cutting Bot Trims The Tedium”

A Screwdriver For The Lazy

The TS100 soldering iron is a sleek handheld device with a tiny display. Now the same people behind it have introduced a motion-controlled screwdriver, the ES120. While we are fans of large electric screwdrivers for working on large projects, we aren’t sure we need a $90 screwdriver for little fasteners. However, if you watch the video review from [Marco], you’ll see it has an interesting user interface that might be useful in other projects. [Marco] is also a bit of a cut up, so you’ll get to see how well the little tool can froth milk, provide transportation, or change a flat. [Marco] also does a tear down if you want to see what’s inside the beast.

What caught our attention was the user interface. We’ve had precision power screwdrivers before, in particular we’ve used the General Tools 500 which costs about $20 and has a two position switch. One direction causes the bit to rotate clockwise and the other direction rotates the tool counterclockwise. The ES120 by comparison only has a single button.

When you hold the button, you twist the screwdriver as though you were using an ordinary tool. The accelerometer in the ES120 detects this rotation and begins rotating in the same direction. The tool can produce four levels of torque and has an automatic setting, as well.

Even [Marco] admits that the ES120 isn’t going to replace his normal screwdrivers. Perhaps if you were dealing with hundreds of fasteners a day though, it would make sense. Then again, we have lots of tools and toys we really don’t need, so if you just want a new shiny gadget to show off, the ES120 looks well made and appears to function well.

What we’d really like to see is someone hack the ES120 into something cool like a coil winder. Of course, if you are in a hacking mood, you can always build your own cheap power driver. Perhaps, though, the ES120 might make it easier for some people to start their cars.

Continue reading “A Screwdriver For The Lazy”

Part Soldering Iron, Part Hand-Held Oscilloscope

If you are in the market for a temperature controlled soldering iron, an attractive choice of the moment is the TS-100 iron available by mail-order from China. This is an all-in-one iron with a digital temperature controller built into its handle, featuring a tiny OLED display. It’s lightweight, reasonable quality, and all its design and software are available and billed as open source (Though when we reviewed it we couldn’t find an open source licence accompanying the code.) This combination has resulted in it becoming a popular choice, and quite a few software hacks have appeared for it.

The latest one to come our way is probably best described as coming from the interface between genius and insanity without meaning to disparage the  impressive achievement of its author. [Befinitiv] has implemented a working oscilloscope on a TS-100, that uses the soldering iron tip as a probe and the OLED as a display. It requires a small modification to the hardware to bring the iron contact into an ADC pin on the microcontroller, and there is currently no input protection on it so the iron could easily be fried, but it works.

It is strongly suggested in the write-up that this isn’t a production-ready piece of work and that you shouldn’t put it on your iron. At least, not without that input protection and maybe a resistive divider. But for all that it’s still an impressive piece of work, a working soldering iron that becomes a ‘scope on a menu selection. Take a look at the ‘scope-iron in action, we’ve posted a video below the break.

Continue reading “Part Soldering Iron, Part Hand-Held Oscilloscope”

Laser-Cut Modular Toolbox

[ystoelen] created this modular wooden toolbox out of laser-cut 5mm plywood secured with leather hinges bolted into place. The leather strips secure the various tool boards with grommets connecting to plastic plugs. The toolboards use cross-shaped holes with laser-cut plugs and strips of elastic securing the tools, allowing each board to be uniquely configured depending on what tool is being stored there. There is a larger, “main” board, onto which smaller boards can be placed depending on what tools you’ll need.

While this is a clever approach to tool transport, we have some concerns about this project. Usually the problem with a box full of tools is that you’ve overloaded it and can’t readily lift it up. Often this involves a steel toolbox that won’t break, no matter what happens. But a plywood construct isn’t nearly that strong, and if overloaded or dropped it’s gonna take some damage.

For more toolbox inspirations, read our posts on a machine shop in a toolbox as well as this Transformers-themed portable workbench.

 

Smooth And Steady Cuts With An Improvised Power Feeder

Some woodworking operations require stock to be fed at a smooth, steady rate, for which purpose a power feeder is usually employed. They’re expensive bits of gear, though, and their cost can usually be borne only by high-output production shops. But when you need one, you need one, and hacking a power feeder from a drill and a skate wheel is a viable option.

It should come as no surprise that this woodshop hack comes to us from [Matthias Wandel], who never seems to let a woodworking challenge pass him by. His first two versions of expedient power feeders were tasked with making a lot of baseboard moldings in his new house. Version three, presented in the video below, allows him to feed stock diagonally across his table saw, resulting in custom cove moldings. The completed power feeder may look simple — it’s just a brushless drill in a wooden jig driving a skate wheel — but the iterative design process [Matthias] walks us through is pretty fascinating. We also appreciate the hacks within hacks that always find their way into his videos. No lathe? No problem! Improvise with a drill and a bandsaw.

Surprised that [Matthias] didn’t use some of his famous wooden gears in this build? We’re not. A brushless motor is perfect for this application, with constant torque at low speeds. Want to learn more about BLDC motors? Get the basics with a giant demo brushless motor.

Continue reading “Smooth And Steady Cuts With An Improvised Power Feeder”