“Cheap Yellow Display” Builds Community Through Hardware

For the most part, Hackaday is all about hardware hacking projects. Sometimes, though, the real hack in a project isn’t building hardware, but rather building a community around the hardware.

Case in point: [Brian Lough]’s latest project, which he dubs “CYD,” for the “cheap yellow display” that it’s based on; which is a lot easier to remember than its official designation, ESP32-2432S028R. Whatever you call it, this board is better than it sounds, with an ESP32 with WiFi, Bluetooth, a 320×480 resistive touch screen, and niceties like USB and an SD card socket — all on aforementioned yellow PCB. The good news is that you can get this thing for about $15 on Ali Express. The bad news is that, as is often the case with hardware from the Big Rock Candy Mountain, the only documentation available comes from a website we wouldn’t touch with a ten-foot pole.

To fix this problem, [Brian] started what he hopes will be a collaborative effort to build a knowledge base for the CYD, to encourage people to put these little gems to work. He has already kick-started that with a ton of quality documentation, including setup and configuration instructions, tips and gotchas, and some sample projects that put the CYD’s capabilities to the test. It’s all on GitHub and there’s already at least one pull request; hopefully that’ll grow once the word gets out.

Honestly, these look like fantastic little boards that are a heck of a bargain. We’re thinking about picking up a few of these while they last, and maybe even getting in on the action in this nascent community. And hats off to [Brian] for getting this effort going.

Continue reading ““Cheap Yellow Display” Builds Community Through Hardware”

3D Printed Dump Truck Carries Teeny Loads

What do you do when you already have a neat little radio-controlled skid-steer loader? Well, if you’re [ProfessorBoots], you build a neat little dump truck to match!

The dump truck is built out of 3D printed components, and has proportions akin to a heavy-duty mining hauler. The dump bed and wheels were oversized relative to the rest of the body to give it a more cartoonish look.

An ESP32 is the brains of the operation. The build is powered by a nifty little 3.6 V rechargeable lithium-ion battery with an integral Micro USB charge port. It’s paired with a boost converter to provide a higher voltage for the servos and motors. Drive is to the rear wheels, thanks to a small DC gear motor. Unlike previous skid-steer designs from [ProfessorBoots], this truck has proper servo-controlled steering. The printed tires are wrapped in rubber o-rings, which is a neat way to make wheels that grip without a lot of fuss. The truck also has a fully-functional dump bed, which looks great fun to play with.

The final build pairs great with the loader that [ProfessorBoots] built previously.

Continue reading “3D Printed Dump Truck Carries Teeny Loads”

Blatano Art Project Tracks Devices In Its Vicinity

Computers, surveillance systems, and online agents are perceiving us all the time these days. Most of the time, it takes place in the shadows, and we’re supposed to be unaware of this activity going on in the background. The Blatano art piece from [Leigh] instead shows a digital being that actively displays its perception of other digital beings in the world around it.

The project is based on an ESP32, using the BLE Scanner library to scan for Bluetooth devices in the immediate vicinity. Pwnagochi and Hash Monster tools are also used to inspect WiFi traffic, while the CovidSniffer library picks up packets from contact-tracking apps that may be operating in the area.

This data is used to create profiles of various devices that the Blatano can pick up. It then assigns names and little robotic images to each “identity,” and keeps tabs on them over time. It’s an imperfect science, given that some devices regularly change their Bluetooth identifiers and the like. Regardless, it’s interesting to watch a digital device monitor the scene like a wallflower watching punters at a house party.

If you’ve built your own art-surveillance devices to comment on the state of modernity, don’t hesitate to drop us a line!

Upgraded Toy Guitar Plays Music

Getting the finishing details on a Halloween costume completed is the key to impressing friends and strangers alike on the trick-or-treat rounds. Especially when it comes to things like props, these details can push a good Halloween costume to great with the right touches. [Jonathan]’s friend’s daughter will be well ahead of the game thanks to these additions to a toy guitar which is part of her costume this year.

The toy guitar as it was when it arrived had the capability to play a few lackluster sound effects. The goal here was to get it to play a much more impressive set of songs instead, and to make a couple upgrades along the way as well. To that end, [Jonathan] started by dismantling the toy and investigating the PCBs for potential reuse. He decided to keep the buttons in the neck of the guitar despite their non-standard wiring configuration, but toss out the main board in favor of an ESP32. The ESP32 is tasked with reading the buttons, playing a corresponding song loaded on an SD card, and handling the digital to analog conversion when sending it out to be played on the speaker.

The project doesn’t stop there, though. [Jonathan] also did some custom mixing for the songs to account for the lack of stereo sound and a working volume knob, plus he used the ESP32’s wireless capabilities to set the guitar up as a local file server so that songs can be sent to and from the device without any wires. He also released the source code on the project’s GitHub page for anyone looking to use any parts of this project. Don’t forget there’s a Halloween contest going on right now, so be sure to submit the final version of projects like these there!

Continue reading “Upgraded Toy Guitar Plays Music”

A Nicer Controller For Cheap Power Supply Modules

These days, you can get all kinds of cheap power supply modules off a variety of online vendors. A lot of examples from brands like Juntek and Drok often have pretty poor interfaces though, with a couple of tactile buttons and a simple 7-segment display. [rin67630] decided to whip up a better controller with a much more informative display.

The controller is designed to work with programmable buck converter modules like the DPS3806, Buck3603, and BST900. It’s based on a TTGO ESP32 with an integrated color TFT LCD. It displays voltage at the input and output, the same for current, along with current setpoints. It also allows for control of a fan and charge cycles if so desired, and it has the ability to fetch time from an NTP server for proper scheduling.  There’s also a web interface complete with graphs for really diving down into the nitty-gritty. Future plans include adding an MPPT solar charging capability.

If you’ve ever wanted a cheap power supply module with really low-level control and rich data display, this could be just what you need. Meanwhile, you’ve got your own neat power supply in the works, don’t hesitate to drop us a line. 

Bluetooth Device Visualizer Reveals Devices In Vicinity

Have you ever wondered how many Bluetooth devices are floating around you? You could use one of those creepy retail store Bluetooth tracking systems, or set your smartphone to scan. Alternatively, you could use the Bluetooth Devices Visualizer from [Jeremy Geppert].

The device was inspired by [Jeremy’s] trip to Hackaday Supercon 2022. Wanting to build something with LEDs that worked in a badge-like form factor, he set out on whipping up a device to scan and display a readout of Bluetooth devices in the immediate area.

The device is based on an ESP32 microcontroller, which provides the necessary Bluetooth hardware to scan for devices. It then displays the number of devices found using an 8 x 8 array of addressable LEDs. There is also a small OLED display on board for displaying relevant details to the device’s operation. The device neatly fits on a lanyard, and is more of an art project than anything else. It’s no wardriver, and details of devices found are not logged or stored in any way when the device is switched off.

With a variety of operational modes, it’s a fun way to get an idea of just how many Bluetooth devices are really out there these days. If you’ve got your own nifty Bluetooth hacks in the works, don’t hesitate to let us know!

 

Spinning Up A New Laundry Monitor

For all that modern washers and dryers do, they don’t let you know when they’re finished. Or they do, but it’s only a short victory song that plays once and can be easy to miss. What most of us need is a gentle reminder that there’s damp laundry festering in the washer, or fresh laundry in the dryer getting wrinkly.

This laundry monitor from [Sparks and Code] is version 2.0. The first version was working fine, but it was based on vibration (or lack thereof). Fast forward a few years, and [Sparks and Code] got a modern pair that’s so finely tuned, it doesn’t produce enough vibration to register. Back to the drawing board [Sparks and Code] went, and eventually came up with version 2.0.

Now, [Sparks and Code] is detecting whether the machines are on using a pair of split-core transformers to monitor power at the breaker box. With these, you just run the wire through the hole, and it gives the relative mV value going through the wire on a 3.5mm cable. Those cables are connected to an ESP32 inside the 3D-printed box, which is mounted above the cabinet door. Since [Sparks and Code] already has home assistants all over the house, it was easy to integrate and have them all play the message ‘please flip the laundry’.

Once this project was all buttoned up, they thought of one issue — the self-cleaning cycle. Since it takes about four hours, they like to run it overnight. You can see the problem here — no one wants to hear Alexa at 3AM. Fortunately, [Sparks and Code] was able to adjust the Python script to ignore these events. Be sure to check out the build video after the break.

If only the dryer could empty itself and fold the clothes. Oh wait, there’s a robot for that.

Continue reading “Spinning Up A New Laundry Monitor”