500 Lasers Are Not Necessarily Better Than One, But They Look Great

If playing with but a single laser pointer is fun, then playing with 500 laser pointers must be 500 times the fun, right? So by extension, training 500 laser pointers on a single point must be the pinnacle of pointless mirth. And indeed it is.

When we first spotted this project, we thought for sure it was yet another case of lockdown-induced  boredom producing an over-the-top build. Mind you, we have no problem with that, but in this case, [nanoslavic] relates that this is actually a project from a few years back. It’s really as simple as it looks: 500 laser pointer modules arranged on a plate with a grid of holes in a 25 by 20 array. As he placed the laser modules on the board with a glob of hot glue, he carefully aimed each one to hit a single point about a meter and a half away.  There are also a handful of blue LEDs nestled into the array, because what project is complete without blue LEDs?

The modules are wired in concentric circuits and controlled by a simple bank of toggle switches. Alas, 500 converging 150-mW 5 mW lasers do not a 75-W 2.5 W laser make; when fully powered, the effect at the focal point is reported to be only a bit warm. But it looks incredible, especially through smoke. Throwing mirrors and lenses into the beam results in some interesting patterns, too.

You’ll still need to take safety seriously if you build something like this, of course, but this one is really just for show. If you’re really serious about doing some damage with lasers, check out the long list of inadvisable laser builds that [Styropyro] has accumulated — from a high-powered “lightsaber” to a 200-Watt laser bazooka.

(Terminate your beams carefully, folks. We don’t want anyone going blind.)

Continue reading “500 Lasers Are Not Necessarily Better Than One, But They Look Great”

Live Map Of London Tube Created In PCB And Lights

If you’re a frequent traveler on a public transit system, it can be helpful to know when the trains or buses are arriving and if there are any delays. We might reach for a tablet to mount on the wall, but that relies on keeping the OS, the software, and its library dependancies up to date. For true reliability you’ll need to build directly in hardware, which is exactly what this map of the London tube system uses.

The base map is printed directly on PCB, with LEDs along each of the major routes to indicate the current location of the trains. A few small chips handle the WiFi connection — it appears to our eye to be an ESP8266 — and pulling the information about the trains from the London Underground API (it would be virtually impossible to build everything for this project in hardware). The hardware can be easily reprogrammed, and with the PCB layout this could be adapted for other public transit fairly easily.

Even apart from the philosophical differences on design between hardware and software approaches, we still appreciate the aesthetic of LEDs on PCB. In fact, we’ve seen a whole host of artwork on PCBs ever since the price came down dramatically in the past two decades.

Thanks to [Al] for the tip!

LED Art Hack Chat

Join us on Wednesday, July 1 at noon Pacific for the LED Art Hack Chat with Aaron Oppenheimer!

From the first time humans crawled into a cave with a bit of charcoal to sketch scenes from the world around them, artists have been searching for new media and new ways to express themselves. Natural products ruled for thousands of years, with pigments stolen or crafted from nature as well as wood, ivory, bone, and stone for carving. Time and experience guided our ancestors to new and better formulations and different materials, to the point that what qualifies as art and what we’d normally think of as technology have, in many cases, blended into one, with the artist often engineering projects of mammoth proportions and breathtaking beauty.

Aaron Oppenheimer co-founded color+light, a company that specializes in large-scale custom art installations for companies like Google, Nike, and Nissan. One of their projects, the “Oddwood Tree”, is displayed alongside other gigantic art pieces at Area15 on the Las Vegas strip. His most recent project, fluora, is a digital houseplant, with addressable LEDs in the leaves that can be controlled by a smartphone app or respond to stimuli in the environment.

Aaron will join us on the Hack Chat to discuss the LED as artistic medium. Join us as we learn what it takes to make enormous art that’s strong enough to interact with yet responsive enough to be engaging.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, July 1 at 12:00 PM Pacific time. If time zones have you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “LED Art Hack Chat”

Chaotic Oscillator From Antique Logic

While working on recreating an “ancient” (read: 60-year-old) logic circuit type known as resistor-transistor logic, [Tim] stumbled across a circuit with an unexpected oscillation. The oscillation appeared to be random and had a wide range of frequency values. Not one to miss out on a serendipitous moment, he realized that the circuit he built could be used as a chaotic oscillator.

Chaotic systems can be used for, among other things, random number generation, so making sure that they do not repeat in a reliable way is a valuable property of a circuit. [Tim]’s design uses LEDs in series with the base of each of three transistors, with the output of each transistor feeding into the input of the next transistor in line, forming a ring. At certain voltages close to the switching voltages of the transistors, the behavior of the circuit changes unpredictably both in magnitude and frequency.

Building real-life systems that exhibit true randomness or chaotic behavior are surprisingly rare, and even things which seem random are often not random enough for certain applications. [Tim]’s design benefits from being relatively simple and inexpensive for how chaotic it behaves, and if you want to see his detailed analysis of the circuit be sure to visit his project’s page.

If you want to get your chaos the old fashioned way, with a Chua circuit, look out for counterfeit multipliers.

Hacking A Cheap Disco Light For UV Effects

Back in the early days of disco, filament bulbs were all the rage. Whether tungsten, halogen, or other obscure types, party lighting involved lots of watts and lots of heat. These days, the efficiency of LEDs makes everything a lot cheaper, lighter, and lower power. [Big Clive] decided to dive into a cheap moonflower-type disco light from China, replacing the insides along the way.

The final effect particularly shines when used on fluorescent materials.

The light originally consisted of an 8×8 grid of LEDs, driven by shift registers for a simple chase effect. Surprisingly, the power supply and other hardware inside seemed to at least make an attempt to meet UK regulations. However, [Big Clive] had other plans, whipping up a replacement PCB packing 64 UV LEDs. The video is informative, showing how with a few simple passive components, it’s easy to drive these LEDs from mains without excessive circuitry required to step down to more usual DC voltages.

The final result is a neat UV grid light that would look excellent through some fog on the dance floor. We’ve seen [Big Clive]’s teardowns before, too – like this nefarious CAN bus interceptor found in a Mercedes. Video after the break.

Continue reading “Hacking A Cheap Disco Light For UV Effects”

Office Status Light Turns “Do Not Disturb” To “Busy”

Open-plan offices with too many desks crammed into them are the scourge of many a tech start-up, and at [Danny Salzman]’s employer, distractions reached an all-time high. His boss instigated a free/busy indicator using coloured cards, but he felt he could do one better and came up with an IoT status light to do the job.

At its heart is a machinery status light of the tri-colour “traffic light” variety, driven by a set of relays under the command of a Particle Photon STM32 ARM Cortex M3 based microcontroller board. The plan to write a super-clever API and integration with Slack or Google Calendar never came together, instead it’s operated by a set of bash shell aliases.

Unfortunately for [Danny] though, it didn’t work as intended. Instead of his colleagues staying away as he had hoped, they flocked to his desk to ask about the new feature, making it not entirely useful as a “Do Not Disturb” light. Still, we like it, and it’s given us ideas about those machinery status lights.

He says he may dig it out for his home during the COVID-19 lockdown. Perhaps he could take some inspiration from this home WiFi status dongle.

Cheap Party Light Gets Arduino Upgrade

If you’ve got a party coming up and are looking to add a little bit of excitement, you might be interested in this recent project from [Gav Lewis]. The build is based on a commercially available party light, but with some upgraded components the final product is brighter and more dynamic than it was stock.

Realistically, [Gav] has changed out almost every component of this light except for the enclosure and the front lens. The original 5 mm LED array was replaced with a new 8×8 WS2812B panel, and the electronics completely replaced with an Arduino Nano. He’s still using the light’s original power supply, but as it only puts out around 4.2 V, he’s added a boost converter to provide a stable 5 V for the new hardware. He also added a small 12 V cooling fan, which he says is basically silent since it’s only getting half its rated voltage.

[Gav] has developed a number of lighting patterns with FastLED that do a good job of emulating what you might see from a much more expensive laser scanner. In the video after the break, you can see how multiple colored beams of light exit the housing at once, projecting patterns on the opposite wall. He says he’s like to restore the device’s original sound activation mode, but as of yet hasn’t gotten the code sorted out.

This project uses a off-the-shelf 8×8 matrix of WS2812B LEDs, but if you ever find yourself needing to piece together your own array from individual LEDs, we recently covered a great tip for making it a bit easier.

Continue reading “Cheap Party Light Gets Arduino Upgrade”