A dress is shown in three shapes: the original, a slightly-heated A-line version, and a close-fitting body con version.

4D Knit Dress Skirts Waste

Regular 2D sewing of anything is inherently wasteful. You can align the pattern pieces however you want, but there’s going to be wasted everything — thread, fabric, and interfacing — whether you get it right the first time or not. Never mind the fact that people tend to create a muslin (prototype) first using inexpensive fabric (like muslin) for the purposes of getting the fit right.

A few examples of the lines than can be created.

The MIT Self-Assembly Lab x Ministry of Supply have come up with a 4D garment construction technique that minimizes waste while being pretty darn cool at the same time. They’ve created a knit dress that combines several techniques and tools, including heat-activated yarns, computerized knitting, and 6-axis robotic activation. The result is a dress that can be permanently molded to fit the body however and wherever you want, using a heat gun mounted on a 6-axis robotic arm.

As far as we can tell, a finished dress does not come off of the machine in the short demo video after the break. It looks like it still has to be sewn together, which creates some potential for waste, but absolutely nothing like conventional methods.

This is probably the coolest dress we’ve seen since the one covered in LCD panels.

Continue reading “4D Knit Dress Skirts Waste”

LED Matrix Earrings Show Off SMD Skills

We’ll be honest with you: we’re not sure if the use of “LED stud” in [mitxela]’s new project refers to the incomprehensibly tiny LED matrix earrings he made, or to himself for attempting the build. We’re leaning toward the latter, but both seem equally likely.

This build is sort of a mash-up of two recent [mitxela] projects — his LED industrial piercing, which contributes the concept of light-up jewelry in general as well as the power supply and enclosure, and his tiny volumetric persistence-of-vision display, which inspired the (greatly downsized) LED matrix. The matrix is the star of the show, coming in at only 9 mm in diameter and adorned with 0201 LEDs, 52 in total on a 1 mm pitch. Rather than incur the budget-busting expense of a high-density PCB with many layers and lots of blind vias, [mitexla] came up with a clever workaround: two separate boards, one for the LEDs and one for everything else. The boards were soldered together first and then populated with the LEDs (via a pick-and-place machine, mercifully) and the CH32V003 microcontroller before being wired to the power source and set in the stud.

Even though most of us will probably never attempt a build on this scale, there are still quite a few clever hacks on display here. Our favorite is the micro-soldering iron [mitxela] whipped up to repair one LED that went missing from the array. He simply wrapped a length of 21-gauge solid copper wire around his iron’s tip and shaped a tiny chisel point into it with a file. We’ll be keeping that one in mind for the future.

Continue reading “LED Matrix Earrings Show Off SMD Skills”

Smart Pants Sound Alarm When Your Fly Is Undone

It’s always embarrassing to be told your fly is down. Even moreso when you realize it’s been that way since you returned from the bathroom an hour ago. [Guy Dupont] has built a device to solve this awkward issue once and for all. (Nitter)

Pictured: The Hall effect sensor and magnet attached to the zipper.

The pants contain a Hall effect sensor which has been attached inside the fly of the jeans, at the bottom of the zipper. The zipper pull itself was then fitted with a strong magnet, which triggers the sensor when the zipper is in the open position. An ESP32 in the pocket of the jeans is tasked with monitoring the sensor. If it detects that the zipper has been down for too long, it sends a notification to the wearer’s smartphone to zip up. We kind of wish they’d sound an ear-splitting klaxon, but that might draw undesired attention to the wearer.

Zipper position monitoring seems like a nightmare at first, but [Guy]’s hack shows us that it’s actually trivial with this method. The system does, however, add significant complication to what was previously a totally-analog pair of pants. Don’t expect “Big Jeans” to jump on this tech, as maintenance and waterproofing issues would likely make the hardware a pain to deal with in real life.

Plus, just imagine the frustration every morning. “Sorry, mate, not ready to head out yet – I’ve gotta pair my jeans with my smartphone.”

Continue reading “Smart Pants Sound Alarm When Your Fly Is Undone”

Jump Like Mario With This Weighted Wearable

Virtual reality has come a long way in the past decade, with successful commercial offerings for gaming platforms still going strong as well as a number of semi-virtual, or augmented, reality tools that are proving their worth outside of a gaming environment as well. But with all this success they still haven’t quite figured out methods of locomotion that feel natural like walking or running. One research group is leaping to solve one of these issues with JumpMod: a wearable device that enhances the sensation of jumping.

The group, led by [Pedro Lopes] at the University of Chicago, uses a two-kilogram weight worn on the back to help provide the feeling of jumping or falling. By interfacing it with the virtual reality environment, the weight can quickly move up or down its rails when it detects that the wearer is about to commit to an action that it thinks it can enhance. Wearers report feeling like they are jumping much higher, or even smashing into the ground harder. The backpack offers a compact and affordable alternative to the bulky and expensive hardware traditionally used for this purpose.

With builds like these, we would hope the virtual reality worlds that are being created become even more immersive and believable. Of course that means a lot more work into making other methods of movement in the virtual space feel believable (like walking, to start with) but it’s an excellent piece of technology that shows some progress. Augmenting the virtual space doesn’t always need bulky hardware like this, though. Take a “look” at this device which can build a believable virtual reality space using nothing more than a webcam.

Continue reading “Jump Like Mario With This Weighted Wearable”

Inside A Pair Of Smart Sunglasses

If you’re willing to spend $200 USD on nothing more than 100 grams of plastic, there are a few trendy sunglasses brands that are ready to take your money before you have time to think twice. Sure, you can get a pair of sunglasses for an order of magnitude less money that do the exact same job, but the real value is in the brand stamped into the plastic and not necessarily the sunglasses themselves. Not so with this pair of Ray-Bans, though. Unlike most of their offerings, these contain a little bit more than a few bits of stylish plastic and [Becky Stern] is here to show us what’s hidden inside.

At first glance, the glasses don’t seem to be anything other than a normal pair of sunglasses, if a bit bulky But on closer inspection they hide a pair of cameras and a few other bits of electronics similar to the Google Glass, but much more subtle. The teardown demonstrates that these are not intended to be user-repairable devices, and might not be repairable at all, as even removing the hinges broke the flexible PCBs behind them. A rotary tool was needed to remove the circuit boards from the ear pieces, and a bench vice to remove the camera modules from the front frame. We can presume these glasses will not be put back together after this process.

Hidden away inside is a pair of cameras, a Snapdragon quad-core processor, capacitive touch sensors, an amplifier for a set of speakers. Mostly this is to support the recording of video and playback of audio, and not any sort of augmented reality system like Google Glass attempted to create. There are some concerning ties with Facebook associated with this product as well which will be a red flag for plenty of us around here, but besides the privacy issues, lack of repairability, and lack of features, we’d describe it as marginally less useful as an entry-level smartwatch. Of course, Google Glass had its own set of privacy-related issues too, which we saw some clever projects solve in unique ways.

Continue reading “Inside A Pair Of Smart Sunglasses”

Adversarial IR Hoodie Lets You Own The Night In Anonymity

If you’re in the market for something to obfuscate your nefarious nocturnal activities, rejoice — this adversarial infrared hoodie may be just what you’re looking for.

Not that we condone illegal activities, of course, and neither does artist [Mac Pierce], who created “The Camera-Shy Hoodie.” His purpose seems to be exploring the nature of the surveillance state, or rather to perplex it in the name of anonymity. The idea is simple — equip a standard hoodie with a ring of super-bright IR LEDs, and control them with an RP2040.

We’ve seen blinding hoodies before, but here the LEDs strobe on and off in one of three different patterns, all of which are timed to confound the autoexposure mechanism in just about any surveillance camera by not giving it time to adjust to the rapidly and drastically changing light level. The result is near-total obfuscation of the wearer’s facial features, at least when the camera is in night-vision mode. Check out the results in the video below.

There are some nice touches to [Mac]’s approach, like aluminum PCBs for the LEDs and the use of soldered-on fabric snaps to attach them to the inside of the hoodie, making them easy to remove for laundering. With the LEDs peeking through holes in the fabric, the hoodie looks pretty run-of-the-mill — until, of course, night falls and the USB battery bank in the hoodie’s pocket powers up the light show.

Granted, this won’t exactly help you avoid detection — the big ball of light around your head will be instantly seen by even the most casual observer. But at least it makes it easier to keep your face to yourself. And it won’t help much in daylight — for that, you might want something a little more like this passive adversarial ugly sweater.

Continue reading “Adversarial IR Hoodie Lets You Own The Night In Anonymity”

Spray-On Keyboard Is As Light As It Gets

We’ve all seen those ‘nothing’ keyboards, where the keys themselves are not much more than projected lasers, and users are asked to ritually beat their poor fingertips into the table — which has little give and even less clack. Well, a team at the Korea Advanced Institute of Science and Technology have come up with a way to eschew the keyboard altogether.

Essentially, the user wears a thin, breathable mesh of silver nanowires coated in gold, which is then embedded in a polyurethane coating. The mesh is sprayed onto their forearms and hands on the spot, and the mesh terminates in a small enclosure that is also worn on the skin. This contains a small Bluetooth unit that beams data back to a computer, a machine, or potentially another user wearing the same type of unit.

As the skin stretches and contorts, the mesh senses small electrical changes within. These changes become meaningful with applied AI, which maps the changes to specific gestures and manual tasks. To do this, the team started with teaching it to distinguish between patterns from tasks like typing on a phone, typing on a regular keyboard, and then holding and interacting with six differently-shaped simple objects.

The team isn’t stopping there — they plan to try capturing a larger range of motion by using the nanomesh on multiple fingers. In addition to facilitating communication between humans and machines, this could leave a huge fingerprint on gaming and VR.