Barobot Serves Cocktails While Using Open Design the Right Way


Oh for the day when we can stop repeatedly looking up our favorite drink recipes on Wikipedia. Those may be just around the corner and you’ll have your choice of single-click delivery or toiling away in the workshop for a scratch build. That’s because Barobot is satisfying both the consumer market and our thirst for open hardware goodness. They’re running a Kickstarter but to our delight, the software and mechanical design files are already posted. Before you dig into the design files there’s a really good look at the constituent parts in the assembly manual (PDF) — that’s a lot of pieces! — and a tiny bit on the tech-stuff page.

This remind us of the Drinkmo we saw earlier in the year. That one cames complete with the high-pitched whine of stepper motors. We didn’t get to hear Barobot’s ambient noise in the promo vid after the break. But one place this desing really shines is a swiveling caddy that allows for a double-row of bottles in a similar footprint. One thing we’d be interesting in finding out is the cleaning procedure. If anyone know what goes into cleaning something like this let us know in the comments.

[Read more...]

Introducing Mirobot, a DIY WiFi Robot for Children



We’re quite sure that fathers parents people reading Hackaday wonder how to introduce their children acquaintances to the wonderful world of electronics. The Mirobot (Kickstarter link) might just be a good way to do so. As you may see in the picture above the Mirobot is a small WiFirobotics kit that children can build themselves to learn about technology, engineering and programming.

The laser cut chassis is assembled by snapping it together. All the electronics are left exposed to the outside so children may try to figure out which component does what. The robot is configured over your home WiFi via a Scratch-like visual programming tool. Everything (PCB, Arduino code, user interface) is open source.

The platform is based around the Arduino compatible ATMega328, two stepper motors, a Wifi module that can behave as a client or access point and 5 AA batteries. The campaign stretch goals include a collision detection sensor, line following functionality and finally a sound add-on.

Thanks [nickjohnson] for the tip.

Phenox: Wherein Quadcopters Get FPGAs


The computing power inside a quadcopter is enough to read a few gyros and accelerometers, do some math, and figure out how much power to send to the motors. What if a quadcopter had immensely more computing power, and enough peripherals to do something cool? That’s what Phenox has done with a micro quad that is able to run Linux.

Phenox looks like any other micro quad, but under the hood things get a lot more interesting. Instead of the usual microcontroller-based control system, the Phenox features a ZINQ-7000 System on Chip, featuring an ARM core with an FPGA and a little bit of DDR3 memory. This allows the quad to run Linux, made even more interesting by the addition of two cameras (one forward facing, one down facing), a microphone, an IMU, and a range sensor. Basically, if you want a robotic pet that can hover, you wouldn’t do bad by starting with a Phenox.

The folks behind Phenox are putting up a Kickstarter tomorrow. No word on how much a base Phenox will run you, but it’ll probably be a little bit more than the cheap quads you can pick up from the usual Chinese retailers.

Videos below.

[Read more...]

Robot Runs on 6 Legs But Never More Than 2 at a Time


Looking at this legged robot gives us the same feeling we had the first time we saw a two-wheeled balancer. At first glance it just shouldn’t work, but after a little thought it makes a lot of sense. The six-legged bot called OutRunner uses two sets of three legs to propel itself. The  footfalls are staggered to mimic how a biped runs, but mechanically it’s just spinning wheels to which the legs attach. If you have a smart enough algorithm it will not only remain upright but be steerable too.

This is a Kickstarter offering to let you can get your hands on an unassembled kit for $200. That version comes with a universal camera mount but no camera. This may not sound like a problem, but look closer and you may notice what we have: The thing is remote-controlled and can run up to 20 MPH, but there’s not footage of it running slowly. We’d wager the need to keep itself balanced equates to the need to run rather than walk. Since it’s going to get away from you very quickly you probably need a camera and a wearable display (or a chase car like in the video) to make the most out of the OutRunner. But hey, who’s complaining about that? Sounds like a ton of fun to us!

Why is it that this thing looks delightful but all of the Boston Dynamics running bots scare the crap out of us?

[Read more...]

Ask Hackaday: Can The Lix 3D Printing Pen Actually Work?


Introducing Lix, the world’s smallest 3D printing pen that allows you to draw plastic structures in 3D. It’s only been on Kickstarter for a few days now, and already it has garnered close to a million dollars in pledges. An astonishing achievement, especially considering we can prove – with math and physics – that it doesn’t work as advertised. However, we’re wondering if it could work at all, so we’re asking the Hackaday community.

The device is powered through a USB 3 port. In the video, the Lix team is using a MacBook Pro. This has a USB port capable of delivering 900 mA at 5 Volts, or 4.5 Watts. Another 3D printing pen, the 3Doodler, uses a 2A, 12V power adapter, equal to 24 Watts. Considering the 3Doodler works, and they both do the same basic thing, there’s something extremely odd going on here.

Just as a comparison, here’s a wirewound resistor commonly found in the heating element or ‘hot end’ of a 3D printer. It’s a 6.8  Ohm resistor powered at 12 Volts. That’s 21 Watts. Here’s a heater cartridge, also found in quite a few hot ends. It sucks down 40 Watts. Once again, the Lix Kickstarter clearly shows the pen extruding filament using only 4.5 Watts of power. Something is really, really fishy here.

Intuition doesn’t hold a candle to math, so let’s figure out exactly why it won’t work.

[Read more...]

C64 MIDI and Flash Cart

KerberosThe SID chip inside the Commodore 64 and 128 is arguably still the gold standard for chip tunes, and the C64 itself still a decent computer for MIDI sequencing. [Frank Buss] realized most of the MIDI cartridges for the Commodore computers are either out of production or severely limited, so he set out to create his own.

Unlike the few Commodore MIDI cartridges that are available, [Frank]‘s Kerberos has MIDI In, Out, and Thru, controlled by the 6850 ACIA chip, just like the old 80s interfaces. This allows the Kerberos to interface with the old Sequential Circuits, Passport, and Datel software. He’s offering the Kerberos cart up on a crowdfunding site, so if you’d like to grab your own, have at it.

Because the Kerberos is also a Flash cart, it also ships with some of this software; [Frank] got permission from Steinberg to install their Pro 16 software with the Kerberos.  SID Wizard is also pre-loaded on the cart, along with a few other fabulous trackers and sequencers. Of course, there’s no requirement for the Flash portion of the cart to only host MIDI and synth software. You can always upload a few games to the cart over a MIDI interface. Video of the Kerberos below.

[Read more...]

Finally, A Desktop CNC Machine With A Real Spindle


While cheap hobby CNC mills and routers are great machines that allow you to build things a 3D printer just can’t handle, they do have their limitations. They’re usually powered by a Dremel or other rotary tool, so speed control of the spindle via Gcode is nigh impossible. They’re also usually built with a piece of plywood as the bed – cheap, but not high on repeatability. The Nomad CNC mill fixes these problems, and manages to look good and be pretty cheap, to boot.

Instead of using a Dremel or other rotary tool to cut materials, the Nomad team is using a brushless DC motor connected to a real spindle. With a few certain motors, this allows for closed loop control of the spindle;  Sending S4000 Gcode to the mill will spin the spindle at 4000 RPM, and S6000 runs the spindle at 6000 RPM, whether it’s going through foam or aluminum. This is something you just can’t do with the Dremel or DeWalt rotary tools found in most desktop mills and routers.

Along with a proper spindle, the Nomad also features homing switches, a tool length probe, and a few included fixtures that make two-sided machining – the kind you need it you’re going to machine a two-layer PCB – possible, and pretty simple, too. The softwares controlling the mill are Carbide Motion and MeshCAM, a pretty popular and well put together CNC controller. Of course the mill itself speaks Gcode, so it will work with open source CNC software.

It’s all a very slick and well put together package. Below you can find a video of the Nomad milling out a Hackaday logo.

[Read more...]