Introducing USB Armory, a Flash Drive Sized Computer

[Andrea] tipped us about USB armory, a tiny embedded platform meant for security projects. It is based on the 800MHz ARM Cortex-A8 Freescale i.MX53 together with 512MB of DDR3 SDRAM, includes a microSD card slot, a 5-pin breakout header with GPIOs/UART, a customizable LED and is powered through USB.

This particular processor supports a few advanced security features such as secure boot and ARM TrustZone. The secure boot feature allow users to fuse verification keys that ensure only trusted firmware can be executed on the board, while the ARM TrustZone enforces domain separation between a “secure” and a “normal” world down to a memory and peripheral level. This enables many projects such as electronic wallets, authentication tokens and password managers.

The complete design is open hardware and all its files may be downloaded from the official GitHub repository. The target price for the final design of the first revision is around €100.

Writing a Message in Hypnotizing Style

If you’ve ever encountered a rapidly spinning split-flap displays at an airport terminal, it’s hard not to stop and marvel at them in action for a few extra seconds. Because of this same fascination, [M1k3y] began restoring an old one-hundred and twenty character sign, which he outlines the process of on his blog.

Finding documentation on this old relic turned out to be an impossibility; the producers of the model themselves didn’t even keep it off-hand any longer. In spite of that, [M1k3y] was able to determine the function of the small amount of circuitry driving the sign through process of elimination by studying the components. After nearly a year of poking at it, he happened across a video by the Trollhöhle Compute Club, demonstrating the successful use of the same display model. Luckily, they were kind enough to share their working source code. By reverse engineering the serial protocol in their example, he was able to write his own software to get the sign moving at last.

Once up and running, [M1k3y] learned that only eighty of the sign’s characters were still operable, but that is plenty to make a mesmerizing statement! Here is a video of the cycling letters in action:

Continue reading “Writing a Message in Hypnotizing Style”

Art from Brainwaves, Antifreeze, and Ferrofluid

Moscow artist [Dmitry Morozov] makes phenomenal geek-art. (That’s not disrespect — rather the highest praise.) And with Solaris, he’s done it again.

The piece itself looks like something out of a sci-fi or horror movie. Organic black forms coalesce and fade away underneath a glowing pool of green fluid. (Is it antifreeze?) On deeper inspection, the blob is moving in correspondence with a spectator’s brain activity. Cool.

You should definitely check out the videos. We love to watch ferrofluid just on its own — watching it bubble up out of a pool of contrasting toxic-green ooze is icing on the cake. Our only wish is that the camera spent more time on the piece itself.

Two minutes into the first video we get a little peek behind the curtain, and of course it’s done with an Arduino, a couple of motors, and a large permanent magnet. Move the motor around with input from an Epoc brain-activity sensor and you’re done. As with all good art, though, the result is significantly greater than the sum of its parts.

[Dmitry’s] work has been covered many, many times already on Hackaday, but he keeps turning out the gems. We could watch this one for hours.

Apollo, the Everything Board

The best projects have a great story behind them, and the Apollo from Carbon Origins is no exception. A few years ago, the people at Carbon Origins were in school, working on a high power rocketry project.

Rocketry, of course, requires a ton of sensors in a very small and light package. The team built the precursor to Apollo, a board with a 9-axis IMU, GPS, temperature, pressure, humidity, light (UV and IR) sensors, WiFi, Bluetooth, SD card logging, a microphone, an OLED, and a trackball. This board understandably turned out to be really cool, and now it’s become the main focus of Carbon Origins.

There are more than a few ways to put together an ARM board with a bunch of sensors, and the Apollo is extremely well designed; all the LEDs are on PWM pins, as they should be, and there was a significant amount of time spent with thermal design. See that plated edge on the board? That’s for keeping the sensors cool.

The Apollo will eventually make its way to one of the crowdfunding sites, but we have no idea when that will happen. Carbon Origins is presenting at CES at the beginning of the year, so it’ll probably hit the Internet sometime around the beginning of next year. The retail price is expected to be somewhere around $200 – a little expensive, but not for what you’re getting.

Making an Inductor Saturation Current Tester

[Kalle] tipped us about a quick project he made over a couple of evenings: an inductor saturation current tester. All the components used for it were salvaged from a beefy telecom power supply, which allows the tester to run currents up to 100A during 30us in the inductors to be characterized.

Knowing the limits of an inductor is very convenient when designing Switch Mode Power Supplies (SMPS) as an inadequate choice may result in very poor performances under high loads. [Kalle]’s tester simply consists in a N-Mosfet switching power through a load while a shunt allows current measurements. The saturation point is then found when the current going through the inductor suddenly peaks. As you can see from the picture above, 16 4700uF electrolytic caps are used to compensate for the sudden voltage drop when the Mosfet is activated. A video of the system in action is embedded after the break.

Continue reading “Making an Inductor Saturation Current Tester”

Bluetooth Thingies at Maker Faire

In case you haven’t noticed, one of the more popular themes for new dev boards is Bluetooth. Slap a Bluetooth 4.0 module on a board, and you really have something: just about every phone out there has it, and the Low Energy label is great for battery-powered Internets of Things.

Most of these boards fall a little short. It’s one thing to throw a Bluetooth module on a board, but building the software to interact with this board is another matter entirely. Revealing Hour Creations is bucking that trend with their Tah board. Basically, it’s your standard Arduino compatible board with a btle module. What they’ve done is add the software for iOS and Android that makes building stuff easy.

Putting Bluetooth on a single board is one thing, but how about putting Bluetooth on everything. SAM Labs showed off their system of things at Maker Faire with LEDs, buttons, fans, motors, sensors, and just about every electrical component you can imagine.

All of these little boards come with a Bluetooth module and a battery. The software for the system is a graphical interface that allows you to draw virtual wires between everything. Connect a button to a LED in the software, and the LED will light up when the button is pressed. Move your mouse around the computer, and the button will turn on a motor when it’s pressed.

There are a few APIs that also come packaged into the programming environment – at the booth, you could open a fridge (filled with cool drinks that didn’t cost five dollars, a surprise for the faire) and it would post a tweet.

Freescale and Texas Instruments Goodies and World Maker Faire

Freescale was very kind to Hackaday at Maker Faire this weekend, showing off a few boards and answering a few questions about why old Motorola application notes aren’t available on the Internet.

The Hummingboard from SolidRun comes in an oddly familiar form factor to anyone who has ever handled a Raspberry Pi. It also has an interesting feature: the CPU is on a small module, allowing anyone to upgrade the chipset to something significantly more powerful. In the top of the line configuration, it has a two core iMX6 CPU with a Gig of RAM, LVDS output, and Gigabit Ethernet. All the complex bits for this board are on a single module, allowing anyone to take the module and put it in another project, a la the Intel Edison.

Also in the Freescale booth was the pcDuino, a dual core ARM Cortex A7 with Ethernet, WiFi, and a SATA, with Arduino form factor pinouts. It’s a somewhat niche product, but being able to stack shields on something comparable to a Raspi or BeagleBone is a nice feature.

[Trey German] from Texas Instruments showed off some very cool stuff, including a quadcopter board for a Launchpad microcontroller. This isn’t a board with an IMU and a few servo outputs; this is the whole shebang with a frame, motors, and props. The frame was cut from some odd composite that’s usually used for road signs, and even though it wasn’t flying at the Faire (nothing was flying, by the way), it’s pretty light for a quad made at a board house.

Also from TI was their CC3200 dev board. This is a single chip with an ARM Cortex M4 and a WiFi radio that we’ve seen before. The CC3200 runs TI’s Wiring/Arduino inspired development environment Energia, and at about $30 for the CC3200 Launchpad board, it’s an easy and cheap way to build an Internet of Things thing.