Multi Input IR Remote Control Repeater

[Peter]’s folks’ cable company is terrible – such a surprise for a cable TV provider – and the digital part of their cable subscription will only work with the company’s cable boxes. The cable company only rents the boxes with no option to buy them, and [Peter]’s folks would need five of them for all the TVs in the house, even though they would only ever use two at the same time. Not wanting to waste money, [Peter] used coax splitters can take care of sending the output of one cable box to multiple TVs, but what about the remotes? For that, he developed an IR remote control multidrop extender. With a few small boards, he can run a receiver to any room in the house and send that back to a cable box, giving every TV in the house digital cable while still only renting a single cable box.

The receiver module uses the same type of IR module found in the cable box to decode the signals from the remote. With a few MOSFETs, this signal is fed over a three-position screw terminal to the transmitter module stationed right next to the cable box. This module uses a PIC12F microcontroller to take the signal input and translate it back into infrared.

[Peter]’s system can be set up as a single receiver, and single transmitter, single receiver and multiple transmitter, many receivers to multiple transmitters, or just about any configuration you could imagine. The setup does require running a few wires through the walls of the house, but even that is much easier than whipping out the checkbook every month for the cable company.

Video below.

Continue reading “Multi Input IR Remote Control Repeater”

DIY PC to telescope interface cable

diy.pc.to.telescope.interface.cable

If you’re serious about astronomy these days, you want to have a computer controlled telescope. Although you can easily purchase a pre-made cable that connects the two devices, where’s the fun in that? [Charles], being an avid Maker, has created a nice step by step guide so you can build your own.

This is a great weekend project, and one that even a novice electronics hobbyist should be able to tackle. It’s straight forward, rather quick, and very easy. Strip some insulation off both ends of the cable, then cut off the unneeded wires. (You’ll only be working with three of them.) Prep everything with heat shrink tubing. Crimp one end of the wires into an RJ10 plug, then solder the other end of the wires into a DB9 connector. Secure the heat shrink tubing in place, attach the housings, and you can call it finished!

[Charles] said the whole procedure only took him around 15 minutes. Total cost? Less than $17 in parts.

How to repair a ribbon cable connection on consumer electronics

It’s not uncommon in cheaper devices to find a ribbon cable soldered directly to the circuit board like the one pictured above. Using a connector would have been a much more resilient approach, but adding parts adds cost. If you take a close look you’ll see things aren’t looking so great anymore. [Chaotic and Random] pulled this board out of his VW Camper Van. Rather than buy an expensive replacement part, he shows us how to repair a soldered ribbon wire connection.

This repair is rather invasive and he suggests trying some hot-air rework (possibly using a heat gun) to fix up any misbehaving connections. But if that has failed it’s time for the knife. The first step is to  cut the ribbon so that the LCD can be removed from the board. From there he peels the remaining scrap off ribbon of the pads. This makes us cringe as it could lift traces from the PCB, but he was gentle enough to avoid it. Now comes the time to start reassembling. After thoroughly cleaning the pads the ribbon is cut straight and resoldered. The trick is to flow the solder without melting the ribbon. He uses tin foil to cover the tip and cools it on a moist sponge just before reflowing solder.

It sounds like more art than science. But when the only alternative is to spend hundreds on a new part it may be worth a try.

SNES controller dock for Dell Streak

The Dell Streak is an Android tablet. [Collin Meyer] wanted to use an original SNES controller to play emulated games on the device. What he came up with is a controller that is a dock for he handheld.

Several things have to come together to make this happen. The Streak uses a standard PDMI dock that connects to a computer via a USB connection. [Collin] repurposed a sync cable by connecting a couple of pins on the dock connector which forces the device to use USB host mode. From there he used a Teensy microcontroller to convert the SNES controller into a USB device (very similar to this hack). The Teensy and shortened sync cable find a new home inside the SNES controller body and, in the video after the break, it looks like he used something like sugru to add a bit of support for the Streak.

Continue reading “SNES controller dock for Dell Streak”

Cheap cable reused to add USB to your project

You get what you pay for. [Jkx] wanted to see how a USB to RS232 cable could be sold for just $1.70 and found out that it’s not actually RS232 compliant. The cable communicated as TTL levels, not the 12V expected of RS232 (although it can handle 12V incoming). He didn’t really want to use them for their intended purpose anyway. By betting rid of the DB9 plug and reusing the enclosed circuit board he now has a really cheap way to interface a microcontroller with the Universal Serial Bus. He worked out a couple of short subroutines that take care of receiving and sending data over the connection.

3 camera booms for your Wednesday afternoon

[Andrew] tipped us off about his Cable Cam built out of some lumber and clothes line. It is small enough to fit into a backpack,  includes a safety line and the camera can pan and tilt. A future version is planned with a small remote motor to move the trolley more effectively.

[Andrew] accidentally linked us to his other Camera Crane, taking the same ‘cheap yet effective’ approach as his Cable Cam. Once again, just some lumber and creative engineering are used to pull this one off.

For those without the ability to weld, check out [Bill Van Loo’s] all wood version of a Camera Crane. Same parallelogram design, without remote video output or central pivot.

SpiderBot emulates spider-man

Spiderbot moves with four magnetic grapplers that it can launch, detach, and aim according to it’s path planning algorithm. While the robot is definitely not a final product and is quite a bit away from moving with the same grace and speed as our friendly neighborhood Spider-Man, it is definitely one of the more interesting locomotion experiments out there. The video has some nice slow motion footage of the main mechanisms as well as screen captures of the path planning.

[Via BotJunkie]