Your Voice Assistant Doesn’t Have To Be Cloudy

Voice assistants are neat — they let us interface with computers without having to bother with touching them at all. Still, many decry the perceived privacy intrusion these devices present, as they’re always trucking data off to corporate servers for all kinds of opaque reasons. Building your own standalone assistant is a way to get around that, and that’s precisely what [Tristram] did.

The build is based on an ESP32 Lyrat development board. Unlike most devboards, this one has two 3 watt audio outputs and mics on board, making it perfect for a build like this one. The Lyrat was paired with some NeoPixel LEDs and a pair of Dayton Audio 1.5″ speakers to enable it to interact with the user both audibly and visually.

[Tristram] steps through not only how to set up the voice assistant, but also how to build it into a simple and attractive enclosure that won’t unduly stand out in the average house. The Lyrat simply has to be flashed with firmware that enables it to work as a voice aid with Home Assistant platform.

If you’re unfamiliar, Home Assistant is a smart home architecture that you can run yourself on your own hardware, without having everything live in the cloud of some murky corporation.

Home Assistant has grown in popularity in recent years as a less intrusive smarthome solution. You can even use it to monitor your hot tub! Video after the break.

Continue reading “Your Voice Assistant Doesn’t Have To Be Cloudy”

Apple Vision Pro’s Secret To Smooth Visuals? Subtly Substandard Optics

The displays inside the Apple Vision Pro have 3660 × 3200 pixels per eye, but veteran engineer [Karl Guttag]’s analysis of its subtly blurred optics reminds us that “resolution” doesn’t always translate to resolution, and how this is especially true for things like near-eye displays.

The Apple Vision Pro lacks the usual visual artifacts (like the screen door effect) which result from viewing magnified pixelated screens though optics. But [Karl] shows how this effect is in fact hiding in plain sight: Apple seems to have simply made everything just a wee bit blurry thanks to subtly out-of-focus lenses.

The thing is, this approach of intentionally de-focusing actually works very well for consuming visual content like movies or looking at pictures, where detail and pixel-to-pixel contrast is limited anyway.

Clever loophole, or specification shenanigans? You be the judge of that, but this really is evidence of how especially when it comes to things like VR headsets, everything is a trade-off. Improving one thing typically worsens others. In fact, it’s one of the reasons why VR monitor replacements are actually a nontrivial challenge.

five 100% recycled keycaps, spaced out

These Keycaps Are 100% Recycled Plastic

Artisan keycaps are generally meant to replace your Escape key, though they can be used anywhere you like (as long as they fit, of course). Keycap maker [tellybelly] of jankycaps has been experimenting with making keycaps out of 100% recycled plastic, and offers an interesting post detailing their development and production process.

Animation of injection molding flow into a set of four keycaps.What do you do when normal injection molding tooling is out of your budget, and silicone molds simply won’t do? You turn to 3D printing if you can. In this case, [tellybelly] and company found a resin designed to withstand high temperatures.

[tellybelly] was able to design the mold using a plethora of online resources, and even verified the flow using a special program. Although the first two versions worked, they had some flaws. Third time’s the charm, though, and then it was time to sort plastic and fire up the shredder.

After heating up the shreds to 200 °C or so, it was time to start the injecting. This part isn’t exactly a cakewalk — mixing different plastics together can vary the workable temperature range that doesn’t degrade the plastic. Although it sounds like the end, [tellybelly] reports that they spent just as much time here as they did at the drawing board, experimenting with pressure on the mold, various cool-down methods, and how long to wait before opening the mold.

Via reddit

You Should Be Allowed To Fix McDonald’s Ice Cream Machines, Say Federal Regulators

Editors Note: According to our infallible record keeping, this is the 50,000th post published on Hackaday! We weren’t sure this was the kind of milestone that required any drawn out navel-gazing on our part, but it does seem significant enough to point out. We didn’t pick any specific post to go out in this slot, but the fact that it ended up being a story about the right to repair ice cream machines seems suitably hacky for the occasion.


The McDonald’s ice cream machine is one of the great marvels of the modern world. It’s a key part of our heavily-mechanized industrial economy, and it’s also known for breaking down as often as an old Italian automobile. It’s apparently illegal to repair the machines unless you’re doing so with the authority of Taylor, the manufacturer. However, as reported by The Verge, The FTC and DOJ may soon have something to say about that.

Things are coming to a head as the Copyright Office contemplates whether to carve out new exemptions in the Digital Millennium Copyright Act. The legislation is widely reviled by many for making it illegal to circumvent copy protection, an act that is often required to maintain or repair certain equipment. As a result customers are often locked into paying the original manufacturer to fix things for them.

Both the FTC and DOJ have have filed a comment with the Copyright Office on the matter. The language will warm the cockles of your heart if you’re backing the right-to-repair movement.

Changes in technology and the more prevalent use of software have created fresh opportunities for manufacturers to limit Americans’ ability to repair their own products. Manufacturers of software-enabled devices and vehicles frequently use a range of restrictive practices to cut off the ability to do a “DIY” or third-party repair, such as limiting the availability of parts and tools, imposing software “locks,” such as TPMs, on equipment that prevent thirdparty repairers from accessing the product, imposing restrictions on warranties, and using product designs that make independent repairs less available.

The agencies want new exceptions to Section 1201 of the DMCA to allow repair of “industrial and commercial equipment.” That would make it legal to tinker with McDonald’s ice cream machines, whoever you are. The hope is this would occur along with a renewal of exceptions for “computer programs that control devices designed primarily for use by consumers and computer programs that control motorized land vehicles, marine vessels, and mechanized agricultural vehicles.”

Brush up on the finer details of icecreamgate in our previous coverage. This could be a grand time for change. Enough is enough— McDonald’s ice cream machines have been down for too long! Video after the break.

Continue reading “You Should Be Allowed To Fix McDonald’s Ice Cream Machines, Say Federal Regulators”

FLOSS Weekly Episode 775: Meshtastic Central

This week, Jonathan Bennett and Rob Campbell chat with Ben Meadors and Adam McQuilkin to talk about what’s new with Meshtastic! There’s a lot. To start with, your favorite podcast host has gotten roped into doing development for the project. There’s a new Rust client, there’s a way to run the firmware on Linux Native, and there’s a shiny new web-based flasher tool!

Continue reading “FLOSS Weekly Episode 775: Meshtastic Central”

DIY RC Controller Built With Old-School Parts

Once upon a time, RC transmitters were expensive units that cost hundreds of dollars even at the low end. Now, you can get them pretty cheaply, or, you can choose to build your own. [Phytion] did just that.

The design isn’t based around a modern microcontroller, nor does it rely on WiFi or Bluetooth connections. Instead, it’s a little more old school. It’s built using the HT12E parallel-to-serial encoder chip, and the HT12D decoder chip for the receiver. The controller uses a pair of HT12Es on the transmitter, and a pair of HT12Ds on the receiver. These accept inputs from a pair of analog joysticks and encode them as serial data. However, they essentially just act as digital joysticks in this design. The HT12Es feed into an STX882 module which transmits the data from the HT12Es over 433 MHz. Another STX882 module receives this signal, and passes it through HT12Ds for decoding.

At the receiving end, one joystick can turn four outputs on or off depending on whether it is pushed up, down, left or right. A channel select switch then allows it to do the same for four further outputs. The second joystick just mirrors the operation of the first. It’s just intended to make controlling something like an RC car easier by allowing one stick to be pushed forwards and backwards, and the other left and right.

You don’t see many designs like this anymore. Realistically, it’s possible to get far more functionality out of a design based on an ESP32 or similar wireless-capable chip. However, this one doesn’t require any complicated handshaking and powers up instantly, which is a nice bonus. Plus, it’s always interesting to see alternative designs tried out in the wild. Video after the break.

Continue reading “DIY RC Controller Built With Old-School Parts”

A DIY DIN rail mounted rack of PLC components for home automation

2024 Home Sweet Home Automation: A DIY SCADA Smart Home

A SCADA-style display of icons and control buttons
Touch-screen control and monitoring

Supervisory control and data acquisition, or SCADA, systems sit in the background in industrial settings, performing all kinds of important jobs but in an ad-hoc setup, depending on the precise requirements of the installation. When we think about home automation systems, they’re pretty much the same deal: ad-hoc systems put together from off-the-shelf components and a few custom bits thrown in. [Stefan Schnitzer] clearly has significant knowledge of SCADA in an industrial setting and has carried this over into their home for their entry into the Hackaday 2024 Home Sweet Home Automation Contest. Continue reading “2024 Home Sweet Home Automation: A DIY SCADA Smart Home”