2021: As The Hardware World Turns

Well, that didn’t go quite as we expected, did it? Wind the clock back 365 days, and the world seemed to be breathing a collective sigh of relief after making it through 2020 in one piece. Folks started getting their COVID-19 vaccines, and in-person events started tentatively putting new dates on the calendar. After a rough year, it seemed like there was finally some light at the end of the tunnel.

Turns out, it was just a another train. New variants of everyone’s favorite acute respiratory syndrome have kept the pandemic rolling, and in many parts of the world, the last month or so has seen more new cases of the virus than at any point during 2020. This is the part of the Twilight Zone episode were we realize that not only have we not escaped the danger, we didn’t even understand the scope of it to begin with.

Case in point, the chip shortages. We can’t blame it entirely on the pandemic, but it certainly hasn’t helped matters. From video game systems to cars, production has crawled to a standstill as manufacturers fight to get their hands on integrated circuits that were once plentiful. It’s not just a problem for industry either, things have gotten so bad that there’s a good chance most of the people reading this have found themselves unable to get their hands on a part or two these last few months. If you were working on a hobby project, it’s a temporary annoyance. But for those who planned on finally bringing their latest big idea to market, we’ve heard tales of heartbreaking delays and costly redesigns.

It would be easy to look at the last twelve months and see nothing but disappointment, but that’s hardly the attitude you want to have at the beginning of the year. So let’s take the high road, and look back on some of the highlights from 2021 as we turn a hopeful eye towards the future.

Continue reading “2021: As The Hardware World Turns”

Need A Small, Cheap Ammeter? Blinkenlights To The Rescue!

You know how it is. You’ve got that new project running, and while it doesn’t consume much power, it also doesn’t give much indication of whether it’s functioning or just sitting there with a dead battery. What you need is an ammeter to check power consumption, even from across the room. And it just so happens that [Manuka] has Just The Circuit You Need, complete with a demonstration in the video after the break!

Oh sure, you could grab a cheap ammeter at your favorite tool import store or site, but those are bulky and take batteries. You could put in an LED that gets dimmer as voltage drops. But wait- is that the sun shining on it? or is it on? Or has something gone awry and it’s consuming too much power?

What [Manuka] gives us is a circuit that is designed to be built into your project or project’s power supply. Using only an ultra-bright white LED, red blinking LED, PNP transistor, and a diode, the circuit gives a strong visual indication of current consumption by blinking brighter and more frequently as current increases. With a bit of calibration, accurate measurements can be obtained. All of this is made possible by using the Flashing LED as a driver for the ultra-bright LED, which is a pretty slick hack!

Flashing LEDs have a great number of uses, like protecting your family from lions. Yes, really. Got a cool tip for flashing LEDs, blinkenlights, 555’s, or any odd thing that strikes your hackers fancy? Let the tip line know!

Continue reading “Need A Small, Cheap Ammeter? Blinkenlights To The Rescue!”

Old-school frequency counter

Edge-Mounted Meters Give This Retro Frequency Counter Six Decades Of Display

With regard to retro test gear, one’s thoughts tend to those Nixie-adorned instruments of yore, or the boat-anchor oscilloscopes that came with their own carts simply because there was no other way to move the things. But there were other looks for test gear back in the day, as this frequency counter with a readout using moving-coil meters shows.

We have to admit to never seeing anything like [Charles Ouweland]’s Van Der Heem 9908 electronic counter before. The Netherlands-based company, which was later acquired by Philips, built this six-digit, 1-MHz counter sometime in the 1950s. The display uses six separate edge-mounted panel meters numbered 0 through 9 to show the frequency of the incoming signal. The video below has a demo of what the instrument can do; we don’t know if it was restored at some point, but it still works and it’s actually pretty accurate. Later in the video, he gives a tour of the insides, which is the real treat — the case opens like a briefcase and contains over 20 separate PCBs with a bunch of germanium transistors, all stitched together with point-to-point wiring.

We appreciate the look inside this unique piece of test equipment history. It almost seems like something that would have been on the bench while this Apollo-era IO tester was being prototyped.

Continue reading “Edge-Mounted Meters Give This Retro Frequency Counter Six Decades Of Display”

Getting Back That YouTube Dislike Button

Ah, Google. Very few companies have mastered the art of creating amazing technology and products, and then so effectively abandoning and mishandling them. Case in point, YouTube. Citing “dislike attacks”, which are coordinated down-voting of particular videos, YouTube opted to hide the dislike counter on all videos. It could be pointed out that dislikes still impact the recommendation algorithm the same way they always have, and that creators still see their dislike counts on their own dashboard.

There might be something to the idea that YouTube doesn’t like the notoriety of their Rewind videos leading the dislike count, with 2018 at nearly 20 million. There may even be validity in the theory that corporate partners don’t like visible dislike numbers on their videos. Regardless, YouTube made the change, and people hate it. Their platform, so nothing you can do about it, right?

“Life, uh, uh, finds a way,” to quote my favorite fictional mathematician. Yes, a hacker, one of us, has figured out a workaround. [Dmitrii Selivanov] has put together the “Return YouTube Dislike” browser extension, which does a couple of things. First, it is pulling archived data about videos, taking advantage of the gap in time between the official announcement, and the removal of the dislike API.

But for new videos? That’s where things are harder. If you install the extension, your video likes and dislikes are tracked, and the combined user data is used to extrapolate an estimated dislike count on any given video. [Dimitrii] is also working on a way to allow individual channels to share their stats with the project, to give more official numbers for their videos.

The extension is open source, and the Chrome web store shows over a million users. Linus Tech Tips, along with a bunch of other channels, have covered this, so check out their videos for more.

Continue reading “Getting Back That YouTube Dislike Button”

Keeping The Philippines’ Surface Waters Clean With Kabooms

[Rich] over at Tropical Ocean Cleanup on YouTube has been working hard to prevent plastic waste from getting into the waters around the Philippines. Even as a mostly one-man crew, he’s collecting large sums of plastic waste using a boom system which he fittingly made out of waste: old tires and empty plastic bottles. This Kaboom system is a low-cost method of capturing any waste so that it can be collected and properly disposed of. In addition [Rich] also installs containers where locals can dispose of their plastic trash.

The Kaboom system is detailed by [Rich] in this video (also linked after the break). As a shoestring budget project, it relies heavily on donations and local support to install more of these booms. It is however a highly effective way to prevent such common plastic waste from making it into the oceans in the first place. Having these booms made out of waste items that are commonly found where humans roam should make this a snap.

Ideally, local governments would be installing such capturing systems and easy waste disposal options, but sometimes it seems grassroots efforts like these are what will bring the fastest change.

Curious about what to do with all that plastic waste once you collect and identify it? How about making some plastic bricks?

Continue reading “Keeping The Philippines’ Surface Waters Clean With Kabooms”

Hackaday Links Column Banner

Hackaday Links: January 2, 2022

That sound you may have heard in the wee hours of Christmas morning had nothing to do with Santa; rather, it was the sound of a million astronomers collectively letting out their breath around the world as the James Webb Space Telescope survived its fiery ride to space. And not only did it survive, but the ESA launch team did such a good job putting the Ariane rocket on course that NASA predicts the observatory now has enough fuel to more than double its planned ten-year mission. Everything about the deployment process seems to be going well, too, with all the operations — including the critical unfurling of the massive and delicate sunshield — coming off without a hitch. Next up: tensioning of the multiple layers of the sunshield. If you want to play along at home, NASA has a nice site set up to track where JWST is and what its current status is, including temperatures at various points on the telescope.

We got a tip from Mark about some dodgy jumper wires that we thought we should share. Low-quality jumpers aren’t really a new problem, but they can really put a damper on the fun of prototyping. The ones that Mark found could be downright dangerous. He got them with a recent dev board purchase; outwardly, they appear fine, at least at first. Upon closer inspection, though, the conductors have turned to powder inside the insulation. Even the insulation is awful, since it discolors when even slightly flexed. He suspects conductors are actually copper-plated aluminum; check out his pictures below and maybe look through your collection for similarly afflicted jumpers.

Speaking of dodgy hardware, if you love the smell of melting MOSFETs in the morning, then have we got a deal for you. It seems that a non-zero number of Asus Z690 Hero PC motherboards have suffered a fiery demise lately, stirring complaints and discontent. This led some curious types to look for the root cause, which led to the theory that an electrolytic cap had been installed with the wrong polarity on the dead boards. Asus confirmed the diagnosis, and is doing the right thing as they are “working with the relevant government agencies on a replacement program.” So if you’ve got one of these motherboards, you might want to watch the video below and see how the caps were installed.

If you’re in the mood for some engineering eye-candy, check out the latest video from Asianometry. They’ve got a finger on the pulse of the semiconductor industry, with particular attention paid to the engineering involved in making the chips we all have come to depend on. The video below goes into detail on the extreme ultraviolet (EUV) light source that fabrication machine maker ASML is developing for the next generation of chip making. The goal is to produce light with a mind-bending wavelength of only 13.5 nanometers. We won’t spoil the details, but suffice it to say that hitting microscopic droplets of tin with not one but two lasers is a bit of a challenge.

And finally, bad luck for 38 people in Tokyo who were part of a data breach by the city’s Metropolitan Police Department. Or rather, good luck since the data breach was caused by the loss of two floppy disks containing their information. The police say that there haven’t been any reports of misuse of the data yet, which is really not surprising since PCs with floppy drives are a little thin on the ground these days. You’d think that this would mean the floppies were left over from the 90s or early 2000s, but no — the police say they received the disks in December of 2019 and February of 2021. We’d love to know why they’re still using floppies for something like this, although it probably boils down to yet another case of “if it ain’t broke, don’t fix it.”

Swiss Army Knife Of Power Tool Carts

When you’re into woodworking in a serious way, you’re going to eventually want some power tools. With such efficiency of operation, things can go pear-shaped quickly, with wood dust getting absolutely everywhere. It’s not always practical (or desirable) to work outdoors, and many of us only have small workshops to do our making in. But woodworking tools eat space quickly. Centralized extraction is one solution, but all that fixed rigid ducting forces one to fix the tool locations, which isn’t always a good thing. Moveable tool carts are nothing new, we’ve seen many solutions over the years, but this build by [Peter Waldraff] is rather slick (video embedded below,) includes some really nice features in a very compact — and critically — moveable format.

By repurposing older cabinets, [Peter] demonstrates some real upcycling, with little going to waste and the end result looks great too! There is a centralized M-Class (we guess) dust extractor with a removable vacuum pipe which is easily removed to hook up to the smaller hand-held tools. These are hidden in a section near the flip-up planer, ready for action. An auto-start switch for the small dust extractor is wired-in to the smaller tools to add a little ease of use while reducing the likelihood of forgetting to switch it on. We’ve all done that.

For the semi-fixed larger tools, such as the miter and table saws, a separate, higher flow rate moveable dust extractor can be wheeled over and hooked up to the integrated plenum chamber, which grabs the higher volume of dust and chips produced.

A nice touch was to mount the miter saw section on sliding rails.  This allows the whole assembly to slide sideways a little, giving more available width at the table saw for ripping wider sheets. With another little tweak of some latches, the whole miter section can flip over, providing even more access to the table saw, or just a small workbench! Cracking stuff!

Need some help getting good with wood, [Eric Strebel] has some great tips for you! And if you’re needs are simpler and smaller, much much smaller, here’s a finger-sized plane for you.

Continue reading “Swiss Army Knife Of Power Tool Carts”