Linux Fu: UEFI Booting

Unless your computer is pretty old, it probably uses UEFI (Unified Extensible Firmware Interface) to boot. The idea is that a bootloader picks up files from an EFI partition and uses them to start your operating system. If you use Windows, you get Windows. If you use Linux, there’s a good chance you’ll use Grub which may or may not show you a menu. The problem with Grub is you have to do a lot of configuration to get it to do different things. Granted, distros like Ubuntu have tools that go through and do much of the work for you and if you are satisfied with that, there’s no harm in using Grub to boot and manage multiple operating systems.

An alternative would be rEFInd, which is a nice modern UEFI boot manager. If you are still booting through normal (legacy) BIOS, the installation might be a hassle. But, in general, rEFInd, once installed, just automatically picks up most things, including Windows, Mac, and Linux operating systems and kernels. The biggest reasons you might change the configuration is if you want to hide some things you don’t care about or change the visual theme.

Continue reading “Linux Fu: UEFI Booting”

Mod, Repair And Maintain Your Cassette Tapes With 3D Printed Parts

The benefit of 3D printers is that they have made it relatively easy to reproduce just about any little plastic thing you might happen to break. If you’re one of the diehards that still has a cassette collection, you might find these 3D prints from Thingiverse useful to repair and maintain any broken tapes you may have.

If you’ve ever stepped on a cassette tape, you’ll know it’s easy to crack the housing and render it unplayable. If you find yourself in this position, you can always 3D print yourself a new cassette tape housing as created by [Ehans_Makes]. The housing design only covers the outer parts of the cassette tape, and doesn’t include the reels, screws, or other components. However, it’s perfect for transplanting the guts of a damaged cassette into a new housing to make it playable once again. The creator recommends using Maxell cassette parts with the design, as it was based on a Maxell cassette shell.

For the modders and musique concrèters out there, [sveltema] designed a simple 3D printed guide for creating tape loops of various lengths. Simply adding a few of these guides to a cassette shell will let you wind a longer continuous loop of tape inside a regular cassette shell. Meanwhile, if you simply want to jazz up your next mixtape gift, consider this cosmetic reel-to-reel mod from [mschiller] that makes your cassettes look altogether more romantic.

Many called the Compact Cassette dead, and yet it continues to live on with enthusiasts. Meanwhile, if you want to learn more about keeping your cassette deck operating at its best, we’ve featured a masterclass on that very topic, too!

New Study Tells Us Where To Hide When The Nukes Are Coming

Geopolitics is a funny thing. Decades can go by with little concern, only for old grudges to suddenly boil to the surface and get the sabers a-rattlin’. When those sabers happen to be nuclear weapons, it can be enough to have you mulling the value of a bomb shelter in your own backyard.

Yes, every time the world takes a turn for the worse, we start contemplating what we’d do in the event of a nuclear attack. It’s already common knowledge that stout reinforced concrete buildings offer more protection than other flimsier structures. However, a new study has used computer modelling to highlight the best places to hide within such a building to maximise your chances of survival.

Continue reading “New Study Tells Us Where To Hide When The Nukes Are Coming”

Addressable LEDs From A Z80

If you buy WS2812s under the Adafruit NeoPixel brand, you’ll receive the advice that “An 8 MHz processor” is required to drive them. “Challenge Accepted!“, says [ShielaDixon], and proceeded to first drive a set from the 7.3 MHz Z80 in an RC2014 retrocomputer, and then repeat the feat from a 3.5 MHz Sinclair ZX Spectrum.

The demos in the videos below the break are all programmed in BASIC, but she quickly reveals that they call a Z80 assembler library which does all the heavy lifting. There’s no microcontroller behind the scenes, save for some glue logic for address decoding, the Z80 is doing all the work. They’re all implemented on a pair of RC2014 extension cards, a bus that has become something of a standard for this type of retrocomputer project.

So the ubiquitous LEDs can be addressed from some surprisingly low-powered silicon, showing that while it might be long in the tooth the Z80 can still do things alongside the new kids. For those of us who had the Sinclair machines back in the day it’s particularly pleasing to see boundaries still being pushed at, as for example in when a Z80 was (almost) persuaded to have a protected mode.

Continue reading “Addressable LEDs From A Z80”

LED Driver Circuit For Safety Hat Sucks Single AAA Cell Dry

[Petteri Aimonen] created an omnidirectional LED safety light to cling to his child’s winter hat in an effort to increase visibility during the dark winter months, but the design is also great example of how to use the Microchip MCP1640 — a regulated DC-DC step-up power supply that can run the LEDs off a single AAA cell. The chip also provides a few neat tricks, like single-button on/off functionality that fully disconnects the load, consuming only 1 µA in standby.

[Petteri]’s design delivers 3 mA to each of eight surface-mount LEDs (which he says is actually a bit too bright) for a total of about 20 hours from one alkaline AAA cell. The single-layer PCB is encased in a clear acrylic and polycarbonate enclosure to resist moisture. A transistor and a few passives allow a SPST switch to act as an on/off switch: a short press turns the unit on, and a long press of about a second turns it back off.

One side effect is that the “off” functionality will no longer work once the AAA cell drained too badly, but [Petteri] optimistically points out that this could be considered a feature: when the unit can no longer be turned off, it’s time to replace the battery!

The usual way to suck a battery dry is to use a Joule Thief, and while this design also lights LEDs, it offers more features and could be adapted for other uses easily. Interested? [Petteri] offers the schematic, KiCAD file for the PCB, and SVG drawing of the enclosure for download near the bottom of the project page.

3D Printed Berlin Uhr Is An Attractive Germanic Clock

As much as Big Ben steals the spotlight when it comes to big public clocks, the Berlin Uhr is a much beloved digital communal timepiece. [RuudK5] developed their own 3D printed replica of this 1980s German icon.

The revision we see today is the [RuddK5]’s third attempt at replicating the Berlin Uhr. The clock features a design with four linear elements with a round light on top. The top light is responsible for blinking the seconds. The lowest line has four lights, each indicating one minute, while the next line has eleven lights, marking out five-minute intervals. Above that, the top two lines represent one hour and five hour blocks respectively. It’s a display unlike most other clocks out there, but when you learn it, it’s easy enough to use.

[RuddK5]’s replica relies on addressable LED strips to serve as the individual lighting elements. The strips are placed inside a 3D printed housing that is a scale replica of the real thing. Running the show is an ESP32 microcontroller, which is charged with getting accurate time updates from an NTP server.

Great design really does shine through, and this clock looks just as appealing at the small scale as it does lofted on a pole over the city of Berlin. If you prefer to read out the time in a simpler fashion though, we’ve featured plenty of clocks like that, as well!

A small electronic board next to colorful stylized speaker

Soundscape Sculpture Is Pleasing Art For Your Ears

Artist and self-described “maker of objects” [Daric Gill] is sharing some of the world’s most pleasing and acoustically interesting soundscapes with museum patrons in his latest work, ‘The Memory Machine: Sound‘.

Now featured at the Center of Science and Industry museum, the interactive stereo soundscape generator resembles three decorated ‘tree trunks’, suspended high above the exhibition floor. When visitors approach the artwork, they are treated to a randomly selected soundscape sample.

The build, which is described in blog form here, teases just some of the sixty soundscape samples that can be heard. These include the noisy chattering of crowds underneath the Eiffel Tower in Paris, the mellow melodies of a meadow high in the Swiss Alps, and the pumping atmosphere of a baseball match played in Yankee Stadium, New York City.

Only the middle trunk reveals the electronic soul of the installation – an Adafruit M4 Feather Express, Music Maker Featherwing and a motion sensor. The flanking trunks house the speakers and amplifier. The motion sensor triggers the microcontroller, which then plays a randomly selected sample from an SD card.

[Daric] went to great lengths to reuse discarded materials, and even cannibalized parts from other sculptures to see his vision through. This focus underpins a substantial amount of woodworking and machining that went into this build, so the full video is certainly worth a watch to see the whole project come together.

Make sure to check out our coverage of other funky installations, like this mesmerizing ceiling decoration.

Continue reading “Soundscape Sculpture Is Pleasing Art For Your Ears”