Sun On The Run: Diving Into Solar With A Mobile PV System

For obvious reasons, there has been a lot of interest in small-scale residential solar power systems lately. Even in my neck of the woods, where the sun doesn’t shine much from October to April, solar arrays are sprouting up on rooftops in a lot of local neighborhoods. And it’s not just here in suburbia; drive a little way out into the country or spend some time looking around in Google maps and it won’t take long to spy a sizable array of PV panels sitting in a field next to someone’s ranch house or barn.

Solar has gotten to the point where the expense of an installation is no longer a serious barrier to entry, at least if you’re willing to put in a little sweat equity and not farm the project out to a contractor. Doing it yourself requires some specialized tools and knowledge, though, over and above your standard suite of DIY skills. So, in the spirit of sharing hard-won knowledge, I decided to take the somewhat unusual step of writing up one of my personal projects, which has been in progress for a couple of years now and resulted in a solar power system that isn’t on a rooftop or a ground-mounted array at all, but rather is completely mobile: my solar trailer.

Continue reading “Sun On The Run: Diving Into Solar With A Mobile PV System”

Is This 3D Printed Third Arm Useful? Maybe?

Humans have two arms, and we do pretty good things with them. More is surely better, though, right? With that in mind, [Emily The Engineer] set out to make a third arm for popular YouTuber [This Old Tony], and our primary question is this: is it actually useful?

The basic design is based around a strapped-on arm brace, which mounts the additional appendage to the wearer’s forearm. It uses a motor-driven geared mechanism to open and close a gripper, but the first revision was incredibly slow to open and close, to the point of being almost useless. Changing out the threaded rod that drives the mechanism massively sped up the gripper, much to [Emily]’s satisfaction. Strength and mounting upgrades got it to the point where it could actually be used to lift objects like spray cans and bricks. Ultimately, though, the arm mount and controls do kind of prevent the user from using their left hand when they have the third hand fitted.

It’s a fun project, if not exactly a useful one, even if [Emily] does use it to carry extra grocery bags . It does have us wondering if some kind of shoulder or backpack-mounted arms could be useful, though. It’s certainly not up to the standards of modern prosthetic, but we do love the idea of human augmentation with additional robot limbs. Here’s hoping technology advances further to make builds like this more capable in future!

Continue reading “Is This 3D Printed Third Arm Useful? Maybe?”

Wiring Up 100 Car Batteries So You Don’t Have To

We’re willing to bet most Hackaday readers have accidentally spot welded a few electrical contacts together over the years, complete with the surge of adrenaline that comes with the unexpected pops and sparks. It’s a mistake you’ll usually only make once or twice. But where most of us would look back at such mishaps as cautionary experiences, [Styropyro] sees an opportunity.

Armed with 100 car batteries wired in parallel, his recent video sees him pitting an assortment of household objects against the combined might of eighty-five thousand amps. Threaded rods, bolts, and angle iron all produce the sort of lightshow you’d expect, but [Styropyro] quickly discovered that holding larger objects down was more difficult than anticipated. It turns out that the magnetic fields being generated by the incredible amount of current rushing through the system was pulling the terminals apart and breaking the connection. After reinforcing the business end of his rig, he was able to tackle stouter objects such as crowbars and wrenches with explosive results.

A modified log splitter serves as a remotely operated switch.

We found that his remotely operated switch, built out of a hydraulic log splitter, to be a particular highlight of the video — unfortunately he only briefly goes over its construction at the very start. His side experiment, fashioning an sort of manually-operated carbon arc lamp with a pair of thick graphite electrodes and demonstrating is luminous efficacy compared to modern LEDs was an unexpected treat. As was the off-the-shelf domestic circuit breaker that impressed [Styropyro] by refusing to yield even after repeated jolts.

While the showers of sparks and vaporized metal might trigger some sweaty palms among the audience, we’ve seen [Styropyro] handle far scarier contraptions in the past. Though he may come off as devil-may-care in his videos, we figure there’s no way he could have made it this long without blinding or maiming himself if he didn’t know what he was doing.

Continue reading “Wiring Up 100 Car Batteries So You Don’t Have To”

E-Bikes Turned Solar Car

There is something to be said for a vehicle that gains range just by standing outside in the sun. In the video after the break, [Drew Builds Stuff] demonstrates how he turned a pair of bicycles into a solar-powered vehicle.

The inspiration for this build started with a pair of 20″ steel framed fat tire bikes [Drew] picked up in a liquidation sale. He welded up a simple steel chassis, and attached the partial bicycle frame and forks to the chassis, using them as steerable front wheels. A short arm was welded to each of the fork, linking them together with threaded rods and rod ends that connect to centrally mounted handlebars. The rear driving wheels are from a 20″ e-bike conversion kit, with the disk brake assembly from the cannibalized bikes.

The solar part of this build comes in the form of three 175W flexible solar panels mounted on cedar frames, coming in at 10 lbs per mounted panel. [Drew] considered using conventional rigid solar panels, but they would have been 4-6 times heavier. The two panels mounted to the rear of the vehicle are on a hinged frame to allow easy access to the electronics below. Battery storage is made up of two 24V 100Ah batteries wired in series, connected to a 60A solar charge controller and the e-bike motor controllers.

The vehicle has a top speed of about 45km/h and 100km range on batteries alone. It might not be fast or engineered for maximum efficiency, but it looks like a ton of fun and relatively simple to build. As [Drew] says, it’s not a how-to for building a perfect solar-powered vehicle, it’s how he built one.

Continue reading “E-Bikes Turned Solar Car”

10-Foot High 3D Printer Based On Ender 3

There are two main ways to 3D print large things. You can either make lots of small 3D prints and stick them together, or you can use a larger 3D printer. [Emily the Engineer] went the latter route by making her Ender 3 a full 10 feet tall.

The best Doug Dimmadome hat we’ve seen in a while, printed on the 10-foot Ender 3. If you’re unfamiliar, Doug Dimmadome is the owner of the Dimmsdale Dimmadome.

The Ender 3’s modular construction made this feat straightforward in the early steps. The printer was simply disassembled, with longer aluminium extrusions bolted in their place. New wheels were resin printed via Onshape to to run along the new extrusions, which were of a slightly different profile to the original parts. Wiring was also a hurdle, with the 10-foot printer requiring a lot longer cables than the basic Ender 3.

An early attempt to make the Z-axis work with a very long threaded rod failed. Instead, a belt-driven setup was subbed in, based on existing work to convert Ender 3s to belt drive. With a firmware mod and some wiring snarls fixed, the printer was ready to try its first high print. Amazingly, the printer managed to complete a print at full height, albeit the shaking of the tall narrow print lead to some print quality issues. The frame and base were then expanded and some struts installed to add stability, so that the printer could create taller parts with decent quality.

While few of us would need a 10-foot high Ender 3, it’s easy to see the value in expanding your printer’s build volume with some easy mods. [Emily] just took it to the extreme, and that’s to be applauded. Video after the break.

Continue reading “10-Foot High 3D Printer Based On Ender 3”

IKEA LACK Table Becomes Extremely Affordable DIY Copy Stand

A copy stand is a tool used to capture images of photos, artwork, books, and things of a similar nature. It holds a camera perpendicular to a large and flat surface, upon which the subject rests.

A threaded rod provides effective vertical adjustment.

They are handy, but there’s no need to spend a lot when [BlandPasta]’s DIY copy stand based on a cheap IKEA LACK table can be turned into an economical afternoon project with the help of simple hardware and a few 3D printed parts.

The main structure comes from a mixture of parts from two LACK tables: one small and one normal-sized. A tabletop is used as the bed, and the square legs make up the structural parts with the help of some printed pieces. A threaded rod combined with some captive hardware provides a way to adjust the camera up and down with a crank, while one can manually slide the horizontal camera mount as needed to frame the subject appropriately.

This is a clever remix of IKEA parts, and the somewhat matte white finish of the LACK complements photography well. Adding some DIY LED lighting is about all it takes to get a perfectly serviceable copy stand that won’t break the bank.

Arctos Robotics: Build A Robot Arm Out Of 3D Printer Spares?

ARCTOS is a 6-DOF robot arm based upon 3D printed mechanics running a modified version of GRBL firmware. Let’s get this straight now, the firmware is open source, but the hardware plans are a paid download, but for less than forty euros, we reckon the investment would be well worth it, judging from the quality of the build instructions and the software support already in place. Continue reading “Arctos Robotics: Build A Robot Arm Out Of 3D Printer Spares?”