Recovering Data From A Vintage MFM Drive

Even if you aren’t a vintage computer aficionado, you’re probably aware that older computer hard drives were massive and didn’t hold much data. Imagine a drive that weighs several pounds, and only holds 1/1000th of what today’s cheapest USB flash drives can. But what you might not realize is that if you go back long enough, the drives didn’t just have lower capacity, they utilized fundamentally different technology and relied on protocols which are today little more than historical footnotes.

A case in point is the circa 1984 Modified Frequency Modulation (MFM) drive which [Michał Słomkowski] was tasked with recovering some files from. You can’t just pop this beast into a USB enclosure; copying files from it required an interesting trip down computing’s memory lane, with a sprinkling of modern techniques that are sure to delight hackers who still like to dip their toes into the MS-DOS waters from time to time.

The drive, a MiniScribe 2012, has its own WD1002A-WX1 8-bit ISA controller card. [Michał] is the kind of guy who just so happens to have an ISA-compatible AT motherboard laying around, but he didn’t have the correct cooler for its Pentium processor. He stuck a random heatsink down onto it with a rubber band and set the clock speed as low as possible, which worked well enough to get him through the copying process.

Not wanting to fiddle with floppies, [Michał] then put together a setup which would let him PXE boot MS-DOS 6.22 under Arch Linux. He used PXELINUX, part of the syslinux package, and created an entry for DOS in the configuration file under the pxelinux.cfg directory. He then installed netboot which combines a DHCP and TFTP server into one simple package, and configured it for the MAC address of the AT machine’s 3com 3C905C-TXM network card.

With the hardware and operating system up and running, it was just a matter of getting the files off of the MFM drive and onto something a bit more contemporary. He tried to copy them to a secondary IDE drive, but it seemed there was some kind of conflict as both drives wouldn’t operate at the same time. So he pulled another solution from his bag of tricks: using a USB mass storage device on MS-DOS. By emulating a SCSI drive, he was able to get a standard flash drive plugged into a PCI USB card working, which ultimately dragged these ~35 year old files kicking and screaming into the 21st century.

We love keeping old hardware alive here at Hackaday, and documented methods to not only PXE boot DOS but use USB storage devices when you get it up and running will hopefully inspire some more hackers to blow the dust off that old 386 in the attic.

The 3D Printed Guitar

We just wrapped up the Musical Instrument Challenge in the Hackaday Prize, and that means we’re sorting through a ton of inventive electronic musical instruments. For whatever reason we can’t seem to find many non-electronic instruments. Yes, MPCs are cool, but so are strings and vibrating columns of air. That’s what makes this entry special: it’s a 3D printed physical guitar. But it’s also got a hexaphonic pickup, there are lights in the fretboard, and it talks to a computer for PureData processing.

First, the construction of this guitar. It’s mostly 3D printed, with the ‘frame’ of the body made in a Creality 3D printer. It’s a bolt-on neck with a telecaster body, but the core of this guitar — where the pickups and bridge attach — are made out of aluminum extrusion. Another piece of aluminum extrusion runs down the neck, which is clad in a 3D-printed ‘back’ that looks ‘comfortable enough’. The headstock is bolted onto the end of this neck, and it seems reasonably tolerant of having a hundred pounds or so of strings pulling on it. The bridge is also 3D printed, with the saddles integrated into the print. Conventional wisdom says this would sound terrible, but nylon saddles were a thing back in the day, so we’re just going to roll with it.

The electronics are where this project really shines. The pickup is a salvaged Roland GK3 hexaphonic deal, with six outputs for each string. This is sent into a Teensy with an audio path for each individual string. Audio processing happens in the guitar, and latency is under five milliseconds, which is quick enough to not be a terrible distraction.

Except for synths and drum machines and computers, the last fifty or so years of technological progress hasn’t really made it to the world of musical instruments. Guitarists, especially, are technophobes who hate everything invented after 1963. While the neck of [Frank]’s ElektroCaster probably doesn’t feel great, this is a really interesting instrument and a great entry to the Hackaday Prize.

The 555 And How It Got That Way

There’s a certain minimum set of stuff the typical Hackaday reader is likely to have within arm’s reach any time he or she is in the shop. Soldering station? Probably. Oscilloscope? Maybe. Multimeter? Quite likely. But there’s one thing so basic, something without which countless numbers of projects would be much more difficult to complete, that a shop without one or a dozen copies is almost unthinkable. It’s the humble 555 timer chip, a tiny chunk of black plastic with eight leads that in concert with just a few extra components can do everything from flashing an LED a couple of times a second to creating music and sound effects.

We’ve taken a look under the hood of the 555 before and featured many, many projects that show off the venerable chip’s multiple personalities quite well. But we haven’t looked at how Everyone’s First Chip came into being, and what inspired its design. Here’s the story of the 555 and how it got that way.

Continue reading “The 555 And How It Got That Way”

Friday Hack Chat: FPGA Bootcamp

For this week’s Hack Chat, we’re going to be talking all about FPGAs, with our own resident FPGA expert.

This summer, Hackaday.io launched FPGA bootcamps, simple, easy-to-follow tutorials that will get you up and running with Verilog. These were all done by Al Williams, Hackaday’s resident FPGA hacker. Al’s an electrical engineer, author of over thirty books, countless magazine articles, and thousands of blog posts. He’s been an amateur radio operator for 41 years, and his first computer used an 1802 chip.

Now Al is putting a little bit of his wisdom over on Hackaday.io. He’s written up a bunch of tutorials that will get you started in programmable digital logic. Everything from a refresher on the ins and outs of nands and nors. a short introduction to Verilog, moving into sequential logic, to putting that code on real FPGA hardware is already up, and this bootcamp isn’t done yet.

If you want to get started in FPGA design, Al’s the guy you want to talk to. During this Hack chat, you’ll be able to ask questions about FPGAs, and about what’s coming up in future bootcamps. We’ll also be talking about Al’s other projects that you might see on Hackaday in the future, like the embedded logic analyzer, his IceStorm workflow, and much more.

During this Hack Chat, we’re going to be talking about:

  • How to use the FPGA tutorials
  • What other FPGAs you can use the tutorials for and how
  • Other Hackaday Bootcamp topics — FPGA or otherwise — that you’d like to see.

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the FPGA Bootcamp Hack Chat and we’ll put that in the queue for the Hack Chat discussion.

join-hack-chat

Our Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Friday, October 12th, at noon, Pacific time. If time zones got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

3D Printed Catamaran Eats Benchy’s Lunch

If we’ve learned anything, it’s that 3D printers are exceptionally well suited to printing little boats. According to the Internet, 3D printers are at their best when pumping out cute PLA boats in all the colors of the rainbow; perfect for collecting dust on a shelf somewhere. Ask not what your Benchy can do for you, ask what you can do your Benchy.

But this 3D printed boat isn’t so cute and cuddly. In fact, it’s an absolute beast. Built by [Wayne Andrews], this nearly meter long 3D printed racing catamaran looks more Batman than Popeye. In the video after the break you can see a recent run of the boat on the lake, and we think you’ll agree it definitely has the performance to back up its fierce looks.

Impressively, the hull isn’t printed out of some expensive high-tech filament. It’s the cheapest PLA [Wayne] could get his hands on, and glued together with nothing more exotic than Loctite Super Glue Gel. The secret is the internal “West System” fiberglass cloth and resin work, which is the same stuff used on real boat hulls. It took about 5 days of continuous printing to produce all the pieces needed to assemble the hull, which is a scaled up version of a design by [Thomas Simon].

The internal layout is about what you’d expect in a fast RC boat. It’s running on a 1900 Kv motor powered by dual 6S batteries and a water cooled 180 A Seaking ESC which provides 5 BHP to the Octura x452 propeller. On the business end of his boat, [Wayne] used a commercial aluminum strut and rudder unit. Running gear printed out of something strong like nylon would be an interesting experiment, but perhaps a tall order for this particular motor.

We recently covered a 3D printed jet boat that’s no slouch either, but if you’re looking for a more relaxed ride you could always 3D print a FPV lifeboat.

Continue reading “3D Printed Catamaran Eats Benchy’s Lunch”

This Year’s Nobel Prizes Are Straight Out Of Science Fiction

In the 1966 science fiction movie Fantastic Voyage, medical personnel are shrunken to the size of microbes to enter a scientist’s body to perform brain surgery. Due to the work of this year’s winners of the Nobel Prize in Physics, laser tools now do work at this scale.

Arthur Ashkin won for his development of optical tweezers that use a laser to grip and manipulate objects as small a molecule. And Gérard Mourou and Donna Strickland won for coming up with a way to produce ultra-short laser pulses at a high-intensity, used now for performing millions of corrective laser eye surgeries every year.

Here is a look at these inventions, their inventors, and the applications which made them important enough to win a Nobel.

Continue reading “This Year’s Nobel Prizes Are Straight Out Of Science Fiction”

Printrbot Post Mortem

For many people, Printrbot was their first 3D printer. What started out as [Brook Drumm’s] Kickstarter idea to make 50 printers turned into over a thousand orders backlogged. To quote [Brook], they went from zero sales to about two million in the first year and then twelve million a few years later. As is often the case, though, the rapid scale-up didn’t survive a drop in sales. [Thomas Sanladerer] has a great interview video with [Brook] and you can see it below.

It is both nostalgic and sad to see the Printrbot headquarters all empty with quiet machines. [Brook] was always one of us and often gave back to the community and it is interesting to hear his perspective about what brought his company to an end.

Continue reading “Printrbot Post Mortem”