Developed On Hackaday: Demonstration Video And Feedback Request

http://www.youtube.com/watch?v=RYaz-s5SXCc

For months our dear Hackaday readers have been following the Mooltipass password keeper’s adventures, today we’re finally publishing a first video of it in action. This is the fruit of many contributors’ labor, a prototype that only came to be because of our motivation for open hardware and our willingness to spend much (all!) of our spare time on an awesome project that might be just good enough to be purchased by others. We’ve come a long way since we started this project back in December.

In the video embedded above, we demonstrate some of our platform’s planned functionalities while others are just waiting to be implemented (our #1 priority: PIN code entering…). A quick look at our official GitHub repository shows what it took to get to where we are now. What’s next?

We need your input so we can figure out the best way to get the Mooltipass in the hands of our readers, as our goal is not to make money. The beta testers batch has just been launched into production and I’ll be traveling to Shenzhen in two weeks to meet our assembler. When materials and fabrication are taken into account we expect each device to cost approximately $80, so please take 3 seconds of your time to answer the poll embedded below: (poll has ended)

Third Person Perspective Is Guaranteed To Mess With Your Senses

3rd person oculus rift

Third person video games are never really that realistic — you get a much wider range of vision, you can typically see around things your character can’t actually see… the list goes on. But what would it be like to have a third person perspective, in real life?

That’s exactly what some hackers in Poland decided to do! This is their Real World Third Person Perspective VR / AR Experiment. It makes use of an Oculus Rift, two GoPros, a microprocessor and a few servo motors. It’s essentially a glorified camera on a stick that you wear as a backpack, but nonetheless it has a really cool effect.

The project was built in under 2 days to get into the tight deadline for Intel’s Wearable contest, which has an impressive prize list, including a grand prize of $500,000 for business development! They didn’t place, but it’s still a Hack a Day worthy project!

Check it out!

Continue reading “Third Person Perspective Is Guaranteed To Mess With Your Senses”

[Fran] & [Bil]’s Dinosaur Den

DinosaurI suppose I can take credit for introducing the super awesome [Fran Blanche] to Hackaday’s very own crotchety old man and Commodore refugee [Bil Herd]. I therefore take complete responsibility for [Fran] and [Bil]’s Dinosaur Den, the new YouTube series they’re working on.

The highlight of this week’s episode is a very vintage Rubicon mirror galvanometer. This was one of the first ways to accurately measure voltage, and works kind of like a normal panel meter on steroids. In your bone stock panel meter, a small coil moves a needle to display whatever you’re measuring. In a mirror galvanometer, a coil twists a wire that is connected to a mirror. By shining a light on this mirror and having the reflected beam bounce around several other mirrors, the angle of the mirror controlled by the coil is greatly exaggerated, making for a very, very accurate measurement. It’s so sensitive the output of a lemon battery is off the scale, all from a time earlier than the two dinosaurs showing this tech off. Neat stuff.

One last thing. Because [Bil] and [Fran] are far too proud to sink to the level of so many YouTube channels, here’s the requisite, “like comment and subscribe” pitch you won’t hear them say. Oh, [Bil] knows the audio is screwed up in places. Be sure to comment on that.

Continue reading “[Fran] & [Bil]’s Dinosaur Den”

Pew Pew! An Arduino Based Laser Rangefinder

Arduino Laser Rangefinder
Lasers are some of the coolest devices around. We can use them to cut things, create laser light shows, and also as a rangefinder.[Ignas] wrote in to tell us about [Berryjam’s] AMAZING write-up on creating an Arduino based laser rangefinder. This post is definitely worth reading.

Inspired by a Arduino based LIDAR system, [Berryjam] decided that he wanted to successfully use an affordable Open Source Laser RangeFinder (OSLRF-01) from LightWare. The article starts off by going over the basics of how to measure distance with a laser based system. You measure the time between an outgoing laser pulse and the reflected return pulse; this time directly relates to the distance of the object. Sounds simple? In practice, it is not as simple as it may seem. [Berryjam] has done a great job doing some real world testing of this device, with nice plots to top it all off. After fiddling with the threshold and some other aspects of the code, the resulting accuracy is quite good.

Recently, we have seen more projects utilizing lasers for range-finding, including LIDAR projects. It is very exciting to see such high-end sensors making their way into the maker/hacker realm. If you have a related laser project, be sure to let us know!

DIY 3D Tilt Sensor

tilt If you’re trying to detect the orientation of an object, sometimes you really don’t need a 6DOF gyro and accelerometer. Hell, if you only need to detect if an object is tilted, you can get a simple “ball in a tube” tilt sensor for pennies. [tamberg] liked this idea, but he required a tilt sensor that works in the X, Y, and Z axes. Expanding on the ‘ball in a tube’ construction of simple tilt sensors, he designed a laser cut 3D tilt sensor that does all the work of of a $30 IMU.

The basic design of this tilt sensor is pretty simple – just an octahedron with four nails serving as switch contacts at each vertex. An aluminum ball knocks around inside this contraption, closing the nail head switches depending on what orientation it’s in. Simple, and the three dimensional version of a ball in tube tilt sensor.

To get the tilt data to the outside world, [tamberg] is using an Adafruit Bluetooth module, with two of the nails in each corner connected to a pin. With just a little bit of code, this 3D tilt sensor becomes a six-way switch to control an RGB LED. Video of that below.

Continue reading “DIY 3D Tilt Sensor”

IcenBerg. The Ice Cream Machine That Knocks

An Icecream Machine

It’s summer. It’s hot. After [Alex Shure] tried his hand at making his own ice cream, he knew he had to take it a step farther. Introducing icenBerg. He’s not just in the ice cream business. He’s building an empire.

Using various odds and ends from the workshop, an old mini fridge donated to him by friends, and a lathe, [Alex] built the first iteration of icenBerg. It features a fancy machined paddle inside the insulated housing, which can be driven by a power drill — or at least that was the plan…

The salvaged compressor system from the mini fridge provides the cooling for the machine. In his first attempt, he found a power drill wasn’t quite strong enough — so he ended up chucking the entire thing into his lathe for unbeatable ice cream mixing. The flavor of choice was apple banana coconut sorbet with chocolate oak cookie chunks and roasted soybeans (say that 10 times fast!).

The machine is far from complete, but as a proof of concept deliciousness it has spurred him to make it even better. He plans on making it a standalone unit using a windshield wiper motor, a PWM circuit with a microcontroller, and even hopes to correlate motor current to ice cream consistency.

Tread lightly.

Seven story robot juggles three VW Beetles

Step Right Up Or Cower In Fear; The 7-Story Car-Juggling Robot Is Here

Sometimes we see a project that’s just as frightening as it is awesome. The Bug Juggler is a prime example of this phenomenon. A seven-story diesel-powered humanoid robot is one thing, but this one will pick up two VW Beetles, put one in its pocket, pick up a third, and juggle them. Yes, juggle them.

The Bug Juggler will be driven by a brave soul sitting in the head-cage and controlling him through haptic feedback connected to high-speed servo valves. A diesel engine will generate hydraulic pressure, and the mobility required for juggling the cars will come from hydraulic accumulators.

The project is in the capable hands of team members who have built special effects, a diesel/hydraulic vehicle for hauling huge sections of pipe, and mechanisms for Space Shuttle experiments. In order to attract investors for the full-scale version, they are building an 8-foot tall proof-of-concept arm assembly capable of tossing and catching a 250lb. mass.

If you prefer to see Beetles crushed, check out Stompy, the 18-foot rideable hexapod. Make the jump to see an animation of the full-scale Bug Juggler in action. Don’t know about you, but we wouldn’t stand quite so close to it without a helmet and some really good health insurance.

Continue reading “Step Right Up Or Cower In Fear; The 7-Story Car-Juggling Robot Is Here”