Art Meets Science In The Cold Wastelands Of Iceland

Although Iceland is now a popular destination for the day-tripping selfie-seeking Instagrammer who rents a 4×4, drives it off road onto delicate ecosystems and then videos the ensuing rescue when the cops arrive, there are still some genuine photographers prepared to put a huge amount of time and effort into their art. [Dheera Venkatraman] is one of the latter and produces composite photos using a relatively low resolution thermal camera and DIY pan and tilt rig.

Whilst we don’t have the exact details, we think that, since the Seek Reveal Pro camera used has a resolution of 320 x 240, [Dheera] would have had to take at least 20 photos for each panoramic shot. In post processing, the shots were meticulously recombined into stunning landscape photos which are a real inspiration to anybody interested in photography.

If you do go to Iceland you might find the traditional food a little challenging to those not raised upon it, nor would you go there for a stag night as beer is eyewateringly expensive. But if you enjoy uninhabitable, desolate, dramatic landscapes there is a huge range of possibilities for the photographer from rugged, frozen lava flows to extra terrestrial ‘Martian’ crater-scapes, if you know where to find them.

[Dheera’s] blog contains some more information about his Iceland photography and there’s a Github repsoitory too. And if you cant afford a $699 Seek Reveal Pro, maybe try building one yourself.

A Baby’s First Year In Data, As A Blanket

New parents will tell you that a baby takes a few months to acquire something close to a day/night sleep pattern, and during that time Mom and Dad also find their sleep becomes a a rarely-snatched luxury. [Seung Lee] has turned this experience into a unique data visualisation, by taking the sleep pattern data of his son’s first year of life and knitting it into a blanket.

The data was recorded using the Baby Connect app, from which it was exported and converted to JSON. This was in turn fed to some HTML/Javascript which generated a knitting pattern in a handy format that could be displayed on any mobile or portable device for knitting on the go. The blanket was then knitted by hand as a series of panels that were later joined into one, providing relief as the rows lined up.

The finished product shows very well the progression as the youngster adapts to a regular sleep pattern, and even shows a shift to the right at the very bottom as a result of a trip across time zones to see relatives. It’s both a good visualisation and a unique keepsake that the baby will treasure one day as an adult. (Snarky Ed Note: Or bring along to the therapist as evidence.)

This blanket was hand-knitted, but it’s not the first knitted project we’ve seen. How about a map of the Universe created on a hacked knitting machine?

A Wedding Gift Fit For A Hardware Hacker

If you read Hackaday on a regular basis, there are some names you will have seen more than once. People who continually produce fascinating and inventive projects that amaze and delight us, and who always keep us coming back for more. One such hacker is [Jeroen Domburg], perhaps better known in these pages by the handle [Sprite_TM], who has never failed to delight us in this respect.

Today is a special day for [Jeroen] for it is his wedding day, and his friend [Maarten Tromp] has decided to surprise him and his wife [Mingming] with a special gift. At first sight it is simply a pair of blinky badges in the shape of a bride and groom, but closer examination reveals much more. The PCBs are studded with WS2812 addressable LEDs controlled by an ESP32 module and powered by a small LiPo battery, and the clever part lies in the software. The two badges communicate via Bluetooth, allowing them to both synchronise their flashing and flash ever faster as the couple come closer to each other.

The write-up is an interesting tale of the tribulations of designing a badge, from which we take away that buying cheap LEDs may be a false economy. A surprise was that the black-cased and white-cased versions of the LEDs had different timings, and they proved prone to failure.

We wish the happy couple all the best, thank [Sprite_TM] for all he has given us over the years, and look forward to seeing his future projects.

Paint The Rainbow With This Skittle-Dropping Pixel Art Robot

We hackers just can’t get enough of sorters for confections like Skittles and M&Ms, the latter clearly being the superior candy in terms of both sorting and snackability. Sorting isn’t just about taking a hopper of every color and making neat monochromatic piles, though. [JohnO3] noticed that all those colorful candies would make dandy pixel art, so he built a bot to build up images a Skittle at a time.

Dubbed the “Pixel8R” after the eight colors in a regulation bag of Skittles, the machine is a largish affair with hoppers for each color up top and a “canvas” below with Skittle-sized channels and a clear acrylic cover. The hoppers each have a rotating disc with a hole to meter a single Skittle at a time into a funnel which is connected to a tube that moves along the top of the canvas one column at a time. [JohnO3] has developed a software toolchain to go from image files to Skittles using GIMP and a Python script, and the image builds up a row at a time until 2,760 Skittle-pixels have been placed.

The downside: sorting the Skittles into the hoppers. [JohnO3] does this manually now, but we’d love to see a sorter like this one sitting up above the hoppers. Or, he could switch to M&Ms and order single color bags. But where’s the fun in that?

[via r/arduino]

Preserving Precious Laptop Stickers

Stickers belong on laptops. That’s not just because all developers are issued a 2015 MacBook Pro at birth to zealously hold and cherish for the rest of their careers, and the vast uniformity of laptop models in the workplace makes each individual’s laptop indistinguishable from anyone else’s. No, stickers belong on laptops because that ‘RUN GCC’ sticker is just so good. But how do you keep a laptop stickered up while not hurting the resale value or worrying about sticky residue left behind? That’s the question [Graham] answered, and the answer may surprise you.

The problem is such: there mus be a way to apply stickers to a MacBook that is invisible, removable, and leaves no trace after being removed, even after years of enjoying a bestickerd’ laptop. The first thought turned to old-style screen protectors for a phone, but this had problems: they’re glossy, and sourcing a large sheet of screen protectors proved difficult.

After some research, it turned out there was a market with similar requirements: car wraps. Yes, you can wrap your car in vinyl that’s any color you want, including whatever Apple is calling their plain aluminum finish these days. As far as a protector for an aluminum MacBook, it looks good: it doesn’t leave any residue behind, it’s strong enough to survive on a car, so it’s probably good enough for a laptop on a desk, and it’s easy to apply.

With some stickers applied to this larger sticker, everything looked good and lived up to a few months of abuse. Then came the real test: could this MacBook wrap be removed with all the other stickers intact? Yes, and you can frame the result. While this is only a test of the aluminum-colored MacBook, vehicle wraps come in nearly every color imaginable. There is apparently a vinyl that looks like Space Gray, and if you want Thinkpad Black, you can get that wrap, too.

Lessons Learned From An Art Installation Build

Art installations are an interesting business, which more and more often tend to include electronic or mechanical aspects to their creation. Compared to more mainstream engineering, things in this space are often done quite a bit differently. [Jan Enning-Kleinejan] worked on an installation called Prendre la parole, and shared the lessons learned from the experience.

The installation consisted of a series of individual statues, each with an LED light fitted. Additionally, each statue was fitted with a module that was to play a sound when it detected visitors in proximity. Initial designs used mains power, however for this particular install battery power would be required.

Arduinos, USB power banks and ultrasonic rangefinders were all thrown into the mix to get the job done. DFplayer modules were used to run sound, and Grove System parts were used to enable everything to be hooked up quickly and easily. While this would be a strange choice for a production design, it is common for art projects to lean heavily on rapid prototyping tools. They enable inexperienced users to quickly and effectively whip up a project that works well and at low cost.

[Jan] does a great job of explaining some of the pitfalls faced in the project, as well as reporting that the installation functioned near-flawlessly for 6 months, running 8 hours a day. We love to see a good art piece around these parts, and we’ve likely got something to your tastes – whether you’re into harmonicas, fungus, or Markov chains.

The Battery Is Part Of The Art

A work of art is appreciated for its own sake and we will never tire of seeing stunning circuits from microscopic dead-bugs to ornate brass sculptures. We also adore projects that share the tricks to use in our own work. Such is the case with [Jiří Praus] who made some jewelry and shared his templates so we try this out ourselves.

The materials include brass wire, solder, and surface-mount LEDs. Template design expects a 1206 light, so if you step outside that footprint, plan accordingly. The printable templates are intuitive and leverage basic wire jewelry making skills. Some good news is that flashing LEDs are available in that size so you can have an array of blinkenlights that appears random due to drifting circuits. Please be wary with RGB lights or mixing colors because red LEDs generally run at a lower voltage and they will siphon a significant chunk of a coin-cell’s power from a competing green or blue. How else can these be personalized?

[Jiří]’s charms are just the latest of circuits that capture our eyes and tickle our ears.