Calculator Built In Super Mario Level. Mamma Mia!

Most people use the Super Mario Maker to, well, create Super Mario game levels. [Robin T] decided to try something a little different: building a working calculator. Several hundred hours later, he created the Cluttered Chaos Calculator, which definitely lives up to the name. What this Super Mario level contains is a 3-bit digital computer which can add two numbers between 0 and 7, all built from the various parts that the game offers. To use it, the player enters two numbers by jumping up in a grid, then they sit back and enjoy the ride as Mario is carried through the process, until it finally spits out the answer in a segment display.

It’s not going to be winning any supercomputer prizes, as it takes about two minutes to add the two digits. But it is still an incredibly impressive build, and shows what a dedicated hacker can do with a few simple tools and a spiny shell or two.

Continue reading “Calculator Built In Super Mario Level. Mamma Mia!”

Thermaltake Gets On The 3D Printing Bandwagon

We’re interested by a move from Thermaltake, a manufacturer of computer cases, fans, and power supplies. Thermaltake has released a computer case designed to be modded by those with a 3D printer. They released a set of models that fits the new case. These are all hosted on a service much like Thingiverse. So if you want a single SSD or a whole rack, print the model. Watercooling? There’s a model for that. In concept, it’s very cool.

We’re not certain how to feel about this. Our initial impression was that if Thermaltake is going to launch a case around 3D printing, they should at lease tune their printer and get some nice prints before they take the press photos. On our second pass we became intrigued. Is this a manufacturer cutting costs, crowd-sourcing design and engineering talent for free, or empowering the user? Arguably, a computer case is a great test bed for this kind of interaction.

Despite out skepticism, we’d like to see more manufacturers take this kind of contributing interest in 3d printing. If only to see where it goes. What other products do you think would benefit from this kind of, print the product you actually want model?

Balancing D-Pad Gets You In The Game

Inspired by TRON, [lasttraveler] decided to try his hand at building a Balance Board — basically a giant joystick pad you can stand on to control.

Constructed of solid wood, the switches are actually very simple — he’s just using tin foil to make the contacts. By opening up the sacrificial keyboard, he’s taken the up/down/left/right keys and wired the contacts directly to the four tin foil pads. A recess in the bottom of the board allows the rest of the keyboard to remain intact — in case he ever wants to take it apart again. Or add new buttons!

Wooden crossbeams in the shape of an X allow the board to balance in the middle without touching any of the contacts — but as soon as you lean the connections are made and you’re off to the races!

Now strap on a VR headset and play some TRON! Though if you want even more accurate control you might want to pick up a cheap Wii balance board instead.

[via r/DIY]

Flip Your Desktop Over To Boot Linux

[Andy France] built his computer into a Windows XP box. (Yes, this is from the past.) He needed to run windows most of the time, but it was nice to boot into Linux every now and then. That’s where the problem lay. If he was running Linux on his Windows XP case mod, he’d get made fun of. The only solution was to make a Linux sleeve for his computer. He would slide the sleeve over the case whenever he ran Linux, and hide his shame from wandering eyes. Once his plan was fully formed, he went an extra step and modified the computer so that if the sleeve was on, it would automatically boot Linux, and if it was off it would boot Windows.

The Linux sleeve could only slide on if the computer was flipped upside down. So he needed to detect when it was in this state. To do this he wired a switch into one of the com ports of his computer, and attached it to the top of the case mod. He modified the assembly code in the MBR to read the state of the switch. When the Linux sleeve is on (and therefore the computer is flipped over) it boots Linux. When the sleeve is off, Windows. Neat. It would be cool to put a small computer in a cube and have it boot different operating systems with this trick. Or maybe a computer that boots into guest mode in one orientation, and the full system in another.

Continue reading “Flip Your Desktop Over To Boot Linux”

Basically, Its Minecraft

[SethBling] really likes Minecraft. How can you tell? A quick look at his YouTube channel should convince you, especially the one where he built a full-blown BASIC interpreter in Minecraft. It is not going to win any speed races, as you might expect, but it does work.

For novelty and wow factor, this is amazing. As a practical matter, it is hard to imagine the real value since there are plenty of ways a new programmer could get access to BASIC. Still, you have to admire the sheer audacity of making the attempt. One Hackaday poster (who shall remain nameless) once won a case of beer by betting someone he or she could write a BASIC compiler in BASIC, so we aren’t sticklers for practicality.

Continue reading “Basically, Its Minecraft”

Stallman’s One Mistake

We all owe [Richard Stallman] a large debt for his contributions to computing. With a career that began in MIT’s AI lab, [Stallman] was there for the creation of some of the most cutting edge technology of the time. He was there for some of the earliest Lisp machines, the birth of the Internet, and was a necessary contributor for Emacs, GCC, and was foundational in the creation of GPL, the license that made a toy OS from a Finnish CS student the most popular operating system on the planet. It’s not an exaggeration to say that without [Stallman], open source software wouldn’t exist.

Linux, Apache, PHP, Blender, Wikipedia and MySQL simply wouldn’t exist without open and permissive licenses, and we are all richer for [Stallman]’s insight that software should be free. Hardware, on the other hand, isn’t. Perhaps it was just a function of the time [Stallman] fomented his views, but until very recently open hardware has been a kludge of different licenses for different aspects of the design. Even in the most open devices, firmware uses GPLv3, hardware documentation uses the CERN license, and Creative Commons is sprinkled about various assets.

If [Stallman] made one mistake, it was his inability to anticipate everything would happen in hardware eventually. The first battle on this front was the Tivoization of hardware a decade ago, leading to the creation of GPLv3. Still, this license does not cover hardware, leading to an interesting thought experiment: what would it take to build a completely open source computer? Is it even possible?

Continue reading “Stallman’s One Mistake”