Hackaday Prize Entry: Coffee Machine Grows In Complexity With No Sign Of Stopping

In Star Trek, there is a race of cyborgs with a drive to slowly assimilate all sentient life. Their aesthetic is not far off from the one [Ronald]’s ever expanding coffee machine is taking on. One has to wonder, what dark purpose would bring the Borg into existence? Where did they start? If [Ronald] doesn’t get a satisfying cup of coffee soon, we may find out.

We covered the first iteration of his brewing machine in 2013. We like to imagine that he’s spent many sleepless, heavily caffeinated days and nights since then to arrive at version 2. This version is a mechanical improvement over his original Rube Goldberg contraption. On top of that, it has improved electronics and code, with a color screen reminiscent of industrial control panels.

He’s also working on something called, “AutoBaristaScript(TM),” which attempts to hold the entire universe of pour-over coffee within its clutches. We don’t know when he’ll stop, but when he does finally create that perfect cup, what’s left of the world will breathe easier. They’ll also drink good coffee.

 

Editor’s Note: The Borg do not necessarily want to assimilate all sentient life as an end unto itself. The Kazon were deemed unworthy of assimilation (VOY: Mortal Coil). The Borg are driven towards perfection, accomplished by adding technological and biological distinctiveness to their own.

Roomba Now Able To Hunt Arnold Schwarzenegger

Ever since the Roomba was invented, humanity has been one step closer to a Jetsons-style future with robots performing all of our tedious tasks for us. The platform is so ubiquitous and popular with the hardware hacking community that almost anything that could be put on a Roomba has been done already, with one major exception: a Roomba with heat vision. Thanks to [marcelvarallo], though, there’s now a Roomba with almost all of the capabilities of the Predator.

The Roomba isn’t just sporting an infrared camera, though. This Roomba comes fully equipped with a Raspberry Pi for wireless connectivity, audio in and out, video streaming from a webcam (and the FLiR infrared camera), and control over the motors. Everything is wired to the internal battery which allows for automatic recharging, but the impressive part of this build is that it’s all done in a non-destructive way so that the Roomba can be reverted back to a normal vacuum cleaner if the need arises.

If sweeping a just the right time the heat camera might be the key to the messy problem we discussed on Wednesday.

The only thing stopping this from hunting humans is the addition of some sort of weapons. Perhaps this sentry gun or maybe some exploding rope. And, if you don’t want your vacuum cleaner to turn into a weapon of mass destruction, maybe you could just turn yours into a DJ.

Intel Makes A Cool Robot Brain In Latest Attempt To Pry Hackers From Their Wallets

Hackerboards got a chance to sit down with Intel’s latest attempt to turn hackers into a willing and steady revenue stream, the, “Euclid.” The board is cool in concept, a full mini computer with stereo cameras, battery, Ubuntu, and ROS nicely packaged together.

We would be more excited if we knew how much it costs, but in principle the device is super cool. From a robotics research perspective it’s a sort of perfect package. ROS is a wonderful distributed and asynchronous robotic operating system, test, and development platform. The Intel developers designed this unit around the needs of ROS and it comes pre-installed on the camera.

For those who haven’t used ROS before, this is a really cool feature. ROS is natively distributed. It really doesn’t care where the computer supplying its data lives. So, for example, if you already had a robot and wanted to add stereo vision to it. You could offload all the vision processing components of your existing ROS codebase to the Euclid and continue as if nothing changed.

The other option is to use the board as the entire robot brain. It’s self contained with battery and camera. It’s a USB to serial connection away from supercharging any small robotics project.

Unfortunately the board is still a demo, and based on Intel’s history, likely to be too expensive to lure ordinary hackers away from the RasPis and import cameras they already know how to hack together into more or less the same thing. Universities will likely be weak at the knees for such a development though.

Keeping Humanity Safe From Robots At Disney

Almost every big corporation has a research and development organization, so it came as no surprise when we found a tip about Disney Research in the Hackaday Tip Line. And that the project in question turned out to involve human-safe haptic telepresence robots makes perfect sense, especially when your business is keeping the Happiest Place on Earth running smoothly.

That Disney wants to make sure their Animatronics are safe is good news, but the Disney project is about more than keeping guests healthy. The video after the break and the accompanying paper (PDF link) describe a telepresence robot with a unique hydrostatic transmission coupling it to the operator. The actuators are based on a rolling-diaphragm design that limits hydraulic pressure. In a human-safe system that’s exactly what you want.

The system is a hybrid hydraulic-pneumatic design; two actuators, one powered by water pressure and the other with air, oppose each other in each joint. The air-charged actuators behave like a mass-efficient spring that preloads the hydraulic actuator. This increases safety by allowing the system to be de-energized instantly by venting the air lines. What’s more, the whole system presents very low mechanical impedance, allowing haptic feedback to the operator through the system fluid. This provides enough sensitivity to handle an egg, thread a needle — or even bop a kid’s face with impunity.

There are some great ideas here for robotics hackers, and you’ve got to admire the engineering that went into these actuators. For more research from the House of Mouse, check out this slightly creepy touch-sensitive smart watch, or this air-cannon haptic feedback generator.

Continue reading “Keeping Humanity Safe From Robots At Disney”

Roomba Vs Poop: Teaching Robots To Detect Pet Mess

Imagine this: you come home after a day at work. As you open the door, your nose is the first alert that something is very, very wrong. Instead of the usual house smell, your nose is assaulted with the distinctive aroma that means your dog had an accident. The smell is stronger though — as if Fido brought over a few friends and they all had a party. Flipping the lights on, the true horror is revealed to you. This was a team effort, but only one dog was involved.

At some point after the dog’s deed, Roomba, your robot vacuum, took off on its scheduled daily run around the house. The plucky little robot performed its assigned duties until it found the mess. The cleaning robot then became an agent of destruction, smearing a foul smelling mess throughout the space it was assigned to clean. Technology sometimes has unintended consequences. This time, your technology has turned against you.

This scene isn’t a work of fiction. For a select few families, it has become an all too odoriferous reality just begging for a clever fix.

Continue reading “Roomba Vs Poop: Teaching Robots To Detect Pet Mess”

HTC Vive Gives Autonomous Robots Direction

The HTC Vive is a virtual reality system designed to work with Steam VR. The system seeks to go beyond just a headset in order to make an entire room a virtual reality environment by using two base stations that track the headset and controller in space. The hardware is very exciting because of the potential to expand gaming and other VR experiences, but it’s already showing significant potential for hackers as well — in this case with robotics location and navigation.

Autonomous robots generally utilize one of two basic approaches for locating themselves: onboard sensors and mapping to see the world around it (like how you’d get your bearings while hiking), or sensors in the room which tell the robot where it is (similar to your GPS telling you where you are in the city). Each method has its strengths and weaknesses, of course. Onboard sensors are traditionally expensive if you need very accurate position data, and GPS location data is far too inaccurate to be of use on a smaller scale than city streets.

[Limor] immediately saw the potential in the HTC Vive to solve this problem, at least for indoor applications. Using the Vive Lighthouse base stations, he’s able to locate the system’s controller in 3D space to within 0.3mm. He’s then able to use this data on a Linux system and integrate it into ROS (Robot Operating System). [Limor] hasn’t yet built a robot to utilize this approach, but the significant cost savings ($800 for a complete Vive, but only the Lighthouses and controller are needed) is sure to make this a desirable option for a lot of robot builders. And, as we’ve seen, integrating the Vive hardware with DIY electronics should be entirely possible.

Continue reading “HTC Vive Gives Autonomous Robots Direction”

One Man, A Raspberry Pi, And A Formerly Hand Powered Loom

[Fred Hoefler] was challenged to finally do something with that Raspberry Pi he wouldn’t keep quiet about. So he built a machine assist loom for the hand weaver. Many older weavers simply can’t enjoy their art anymore due to the physical strain caused by the repetitive task. Since he had a Pi looking for a purpose, he also had his project.

His biggest requirement was cost. There are lots of assistive looms on the market, but the starting price for those is around ten thousand dollars. So he set the rule that nothing on the device would cost more than the mentioned single board computer. This resulted in a BOM cost for the conversion that came in well under two hundred dollars. Not bad!

The motive parts are simple cheap 12V geared motors off Amazon. He powered them using his own motor driver circuits. They get their commands from the Pi, running Python. To control the loom one can either type in commands into the shell or use the keyboard. There are also some manual switches on the loom itself.

In the end [Fred] met his design goal, and has further convinced his friends that the words Raspberry Pi are somehow involved with trouble.

Continue reading “One Man, A Raspberry Pi, And A Formerly Hand Powered Loom”