3D Printed Tires, By The Numbers

What does it take to make decent tires for your projects? According to this 3D printed tire torture test, it’s actually pretty easy — it’s more a question of how well they work when you’re done.

For the test, [Excessive Overkill] made four different sets of shoes for his RC test vehicle. First up was a plain PLA wheel with a knobby tread, followed by an exact copy printed in ABS which he intended to coat with Flex Seal — yes, that Flex Seal. The idea here was to see how well the spray-on rubber compound would improve the performance of the wheel; ABS was used in the hopes that the Flex Seal solvents would partially dissolve the plastic and form a better bond. The next test subjects were a PLA wheel with a separately printed TPU tire, and a urethane tire molded directly to a PLA rim. That last one required a pretty complicated five-piece mold and some specialized urethane resin, but the results looked fantastic.

Non-destructive tests on the tires included an assessment of static friction by measuring the torque needed to start the tire rolling against a rough surface, plus a dynamic friction test using the same setup but measuring torque against increasing motor speed. [Overkill] threw in a destructive test, too, with the test specimens grinding against a concrete block at a constant speed to see how long the tire lasted. Finally, there was a road test, with a full set of each tire mounted to an RC car and subjected to timed laps along a course with mixed surfaces.

Results were mixed, and we won’t spoil the surprise, but suffice it to say that molding your own tires might not be worth the effort, and that Flex Seal is as disappointing as any other infomercial product. We’ve seen other printed tires before, but hats off to [Excessive Overkill] for diving into the data.

Continue reading “3D Printed Tires, By The Numbers”

Retrotechtacular: Ford Model T Wheels, Start To Finish

There’s no doubt that you’ll instantly recognize clips from the video below, as they’ve been used over and over for more than 100 years to illustrate the development of the assembly line. But those brief clips never told the whole story about just how much effort Ford was forced to put into manufacturing just one component of their iconic Model T: the wheels.

An in-house production of Ford Motors, this film isn’t dated, at least not obviously. And with the production of Model T cars using wooden spoked artillery-style wheels stretching from 1908 to 1925, it’s not easy to guess when the film was made. But judging by the clothing styles of the many hundreds of men and boys working in the River Rouge wheel shop, we’d venture a guess at 1920 or so.

Production of the wooden wheels began with turning club-shaped spokes from wooden blanks — ash, at a guess — and drying them in a kiln for more than three weeks. While they’re cooking, a different line steam-bends hickory into two semicircular felloes that will form the wheel’s rim. The number of different steps needed to shape the fourteen pieces of wood needed for each wheel is astonishing. Aside from the initial shaping, the spokes need to be mitered on the hub end to fit snugly together and have a tenon machined on the rim end. The felloes undergo multiple steps of drilling, trimming, and chamfering before they’re ready to receive the spokes.

The first steel component is a tire, which rolls down out of a furnace that heats and expands it before the wooden wheel is pressed into it. More holes are drilled and more steel is added; plates to reinforce the hub, nuts and bolts to hold everything together, and brake drums for the rear wheels. The hubs also had bearing races built right into them, which were filled with steel balls right on the line. How these unsealed bearings were protected during later sanding and grinding operations, not to mention the final painting step, which required a bath in asphalt paint and spinning the wheel to fling off the excess, is a mystery.

Welded steel spoked wheels replaced their wooden counterparts in the last two model years for the T, even though other car manufacturers had already started using more easily mass-produced stamped steel disc wheels in the mid-1920s. Given the massive infrastructure that the world’s largest car manufacturer at the time devoted to spoked wheel production, it’s easy to see why. But Ford eventually saw the light and moved away from spoked wheels for most cars. We can’t help but wonder what became of the army of workers, but it probably wasn’t good. So turn the wheels of progress.

Continue reading “Retrotechtacular: Ford Model T Wheels, Start To Finish”

BikeBeamer Adds POV Display To Bicycle Wheels

Unless you’re living in a bicycle paradise like the Netherlands, most people will choose to add some sort of illumination to their bicycle to help drivers take note that there’s something other than a car using the road. Generally, simple flashing LEDs for both the front and the rear is a pretty good start, but it doesn’t hurt to add a few more lights to the bicycle or increase their brightness. On the other hand, if you want to add some style to your bicycle lighting system then this persistence of vision (POV) display called the BikeBeamer from [locxter] might be just the thing.

The display uses four LED strips, each housed in their own 3D printed case which are installed at 90-degree angles from one another in between the spokes of a standard bicycle wheel. An ESP32 sits at the base of one of the strips and is responsible for storing the image and directing the four displays. This is a little more complex than a standard POV display as it’s also capable of keeping up with the changing rotational speeds of the bicycle wheels when in use. The design also incorporates batteries so that no wires need to route from the bike frame to the spinning wheels.

This is an ongoing project for [locxter] as well, meaning that there are some planned upgrades even to this model that should be in the pipe for the future. Improving the efficiency of the code will hopefully allow for more complex images and even animations to be displayed in the future, and there are also some plans to improve the PCB as well with all surface-mount components. There are a few other ways to upgrade your bike’s lighting as well, and we could recommend this heads-up headlight display to get started.

Tiny Orrery Is A Watchmaker’s Tour De Force

Six tiny gears, a few fancy pins, and some clever casting are what it takes to build this tiny orrery. And patience — a lot of patience, too.

As model solar systems go, this one is exceptionally small. Its maker, [Mike] from Chronova Engineering, says it measures about 20 mm across and qualifies as the smallest orrery around. We can’t officiate that claim, but we’re not going to argue with it either. It’s limited to the Sun-Earth-Moon system, and while not as complete as some other models we’ve seen, it’s still exquisitely detailed. The gears that keep the Moon rotating 12.4 times around the Earth for each rotation of our home planet around the Sun are tiny, and take an abundance of watchmaking skill to pull off.

The video below shows the whole process, which is absolutely entrancing to watch. There are some neat tricks on display, from milling out the arms of the main wheel using a powered tailstock spindle to casting the Sun from resin in a silicone mold. The final model, with the model Earth and Moon spinning around the Sun on delicate brass wheels, is a visual treat.

We’ve seen some interesting stuff from Chronova Engineering lately, including this bimetallic tea timer.

Continue reading “Tiny Orrery Is A Watchmaker’s Tour De Force”

Put A Little Pigeon In Your Next Clock Project

If you’re anything like us, you’ve probably wondered why gear teeth are shaped the way they’re shaped. But we’ll go out on a limb and say you’ve never wondered why gear teeth aren’t shaped like pigeons, and what a clock that’s not quite a clock based around them would look like.

If this sounds like it has [Uri Tuchman] written all over it, give yourself a cookie. [Uri] has a thing for pigeons, and they make an appearance in nearly all his whimsical builds, from his ink-dipping machine to his intricately engraved metal mouse. For this build, pigeons are transformed into the teeth of a large, ornate wheel, cut from brass using an impressive Friedrich Deckel pantograph engraver. To put the pigeon wheel to work, [Uri] built an escapement and a somewhat crooked pendulum, plus a drive weight and dial. It’s almost a clock, but not quite, since it doesn’t measure time in any familiar units, and the dial has a leg rather than hands — classic [Uri].

It may not be [Clickspring]-level stuff, but it’s still a lovely piece of work, and instructive to boot. The way [Uri] figured out the profile for the meshing teeth by looking at the negative space swept out by the pigeon profiles was pretty sweet. Plus, pigeons.

Continue reading “Put A Little Pigeon In Your Next Clock Project”

3D Printed Wheels Passively Transform To Climb Obstacles

Wheels do a great job at rolling over all kinds of terrain, particularly if you pair them with compliant tires. However, they’re not perfect, and can get stumbled by things like large vertical steps. Enter the PaTS-Wheel — a compliant mechanism that can tackle such obstacles with ease.

The PaTS-Wheel takes advantage of printable flexural hinges. Under regular conditions, it exists as a simple round wheel. However, when presented with a step obstacle, its individual segments can bend and flex to grab on to the step and hoist the vehicle up. It all happens passively as a result of the wheel’s structure, no actuators or control system are needed to achieve this action.

The video below does a great job of explaining the concept in raw engineering terms, as well as showing it in action. If you really want to drill down though, dive into the research paper. The design outperformed smooth wheels and whegs in climbing ability, and was able to match smooth wheels in simple tests of flat ground power consumption. The results are very impressive.

We’ve seen other transforming wheels before, like these wheg-like constructions, but nothing so passive and elegant as these. Video after the break.

Continue reading “3D Printed Wheels Passively Transform To Climb Obstacles”

YouTuber Builds Onewheel With Tracks Instead And It’s Not Great

The one-wheel is a triumph of modern sensor and control technology. That made it possible to sense the acceleration and position of a platform with a single wheel, and to control that single wheel to keep the platform stable and level, even in motion. [RCLifeOn] has now taken that same concept and made it more hilarious by swapping out the wheel for a track.

The original idea was to build an electric snowboard, which worked just okay. Then, it morphed into a tank-based one-wheel instead. It’s a bit silly on the face of it, because a track is more stable than a wheel. That’s because instead of balancing on a small flattened spot of a tire, it’s got a wider, flatter footprint. But that means there’s no real need for balancing control as the track is statically stable.

The 3D-printed track assembly is driven by a powerful brushless motor via a gear drive for additional torque. Riding it is difficult on 48-volt power as it easily throws [RCLifeOn] off the board with its raw torque. At 24 volts, however, it was just barely ridable with some practice. But it was ultimately pretty terrible. It was either not moving at all, or jerking so hard that it was impossible to stay on the thing.

We’d like to see this concept tried again, perhaps with a rubber track and a more refined controller. Video after the break.

Continue reading “YouTuber Builds Onewheel With Tracks Instead And It’s Not Great”