Learning ARM Without Dev Board

There’s a tremendous amount of value in using pre-built, known-good development environments. It saves you hours of potential headaches when things aren’t working. Is the bug in the hardware or the software? If you bought a dev kit, you can be pretty sure it’s your software. But sometimes using a dev kit also feels like there’s a black box in the system. [Kevin] wanted to peer inside the black box, so he ordered a tray of cheap STM32F103 chips on eBay, and did the rest himself.

“The rest” isn’t all that much, but figuring that out is half the battle. [Kevin] soldered the TQFP chip onto a breakout board, added some decoupling capacitors, and connected four pins up to a dirt-cheap ST-Link programmer clone. The rest of the article describes the toolchain he used to compile for and program the chip. The end result is, natch, a blinking LED.

If you’re a bit experienced with microcontrollers and want to dive head-first into an ARM chip, [Kevin]’s writeup is just the ticket. In a single (long) blog post, he walks you through all the steps. If this is your first rodeo, you might be tempted to cheese out and buy a pre-built board on eBay (search “STM32F103” and you’ll find many options to choose from) and we don’t think that’s a bad idea either. Still, there’s just something to be said for the confidence that you’ll have once you’ve built the whole system from scratch.

FriendlyARM: A Different Flavor of Raspberry

A lot of old science fiction movies show people wearing the same–or nearly the same–clothes. We’re left guessing if this is because there is a single centralized plant mass-producing skin-tight jumpsuits, or if everyone is under orders to dress the same. Now that we live in the past’s future, it looks like science fiction was a poor predictor of fashion. People want variety.

Which calls to mind development boards. How many different ones do we need? Need doesn’t matter, because we have plenty of them. There may be strong leaders: in the 8-bit world, you think of the Arduino, and on the Linux side, maybe the Raspberry Pi. But there are options.

[Eric Brown] recently compared several inexpensive development boards from FriendlyARM including the NanoPi M3, the NanoPi M1, and the NanoPC-T3. These range from about $11 to $60 with the M3 costing $35. You can see an M1 booting on an HDMI screen in the video below.

Continue reading “FriendlyARM: A Different Flavor of Raspberry”

Chibiterm Is A Tiny Low-Cost VGA Terminal

A common sight in the days before cheap PCs conquered the world was the dumb terminal. A keyboard and a monitor with a serial port on the back that was usually hooked up to a minicomputer or even a mainframe, these were simple devices. Anything that came into the serial port was rendered on the screen, anything typed on the keyboard was sent out through the serial port. They didn’t need to contain a microprocessor. If you are old enough, you may remember electronics magazines of the 1970s and early 1980s publishing terminal designs based entirely on 74 series logic.

The serial terminal might seem like a redundant historical footnote when viewed from 2016, but they can still find a use among those working with systems such as small embedded microcontrollers that only possess a serial port. To address this application, Hackaday.io user [K.C.Lee] has created a low-cost terminal module for a VGA monitor and a PS/2 keyboard based around an inexpensive STM32F030F4 processor.

Continue reading “Chibiterm Is A Tiny Low-Cost VGA Terminal”

New Part Day: A BeagleBone On A Chip

The current crop of ARM single board computers have a lot in common. Everything from the Odroid to the Raspberry Pi are built around Systems on a Chip, a piece of silicon that has just about everything you need to build a bare minimum board. You won’t find many hardware hackers playing around with these chips, though. That would require putting some RAM on the board, and some other high-speed connectors. Until now, the only people building these ARM boards were Real Engineers™, with a salary commensurate of their skills.

This is now about to change. Octavo Systems has launched a new product that’s more or less a BeagleBone on a chip. If you can handle putting a PCB with a BGA package in a toaster oven, you too can build your own ARM single board computer running Linux.

Octavo’s new System in Package is the OSD335x family, featuring a Texas Instruments AM335x ARM Cortex A8 CPU, up to 1GB of DDR3, and peripherals that include 114 GPIOs, 6 UARTs, 2 SPIs, 2 I2Cs, 2x Gigabit Ethernet, and USB.

The chips used in commercially available single board computers like the Pi and BeagleBone have hundreds of passive components sprinkled around the board. This makes designing one of these single board computers challenging, to say nothing about actually assembling the thing. Octavo is baking a bunch of these resistors, capacitors, and inductors right into this chip, allowing for extremely minimal boards running Linux. [Jason Kridner] – the BeagleBone guy – is working on a PocketBone, a full-fledged Linux computer that will fit inside an Altoids tin.

Of course, with this degree of integration, a BeagleBone on a chip won’t be cheap. The first part number of this family to be released, with the AM3358 CPU and 1GB of RAM, sells for $50 in quantity one.

Still, this is something we haven’t seen before. It’s a Linux computer on a chip that anyone can use. There is an Eagle symbol for this module. This is a chip designed for hardware hackers, and we can’t wait to see what people using this chip will come up with.

Pine64: The Un-Review

Even before the announcement and introduction of the Raspberry Pi 3, word of a few very powerful single board ARM Linux computers was flowing out of China. The hardware was there – powerful 64-bit ARM chips were available, all that was needed was a few engineers to put these chips on a board, a few marketing people, and a contract manufacturer.

One of the first of these 64-bit boards is the Pine64. Introduced to the world through a Kickstarter that netted $1.7 Million USD from 36,000 backers, the Pine64 is already extremely popular. The boards are beginning to land on the doorsteps and mailboxes of backers, and the initial impressions are showing up in the official forums and Kickstarter campaign comments.

I pledged $15 USD to the Pine64 Kickstarter, and received a board with 512MB of RAM, 4K HDMI, 10/100 Ethernet and a 1.2 GHz ARM Cortex A53 CPU in return. This post is not a review, as I can’t fully document the Pine64 experience. My initial impression? This is bad. This is pretty bad.

Continue reading “Pine64: The Un-Review”

Poor Man’s Time Domain Reflectometer

A time domain reflectometer, or TDR, is an essential piece of test gear when working on long cables. The idea is simple: send a pulse down the cable and listen for the reflection from the far end. The catch is that pesky universal constant, the speed of light.

The reason the speed of light is an issue is that, in a traditional system, the pulse needs to be complete before the reflection. Also, time is resolution, so a 1 GHz sampling rate provides a resolution of about 10 centimeters. [Krampmeier] has a different design. He sends variable length pulses and measures the overlap between the outgoing and reflected pulses. The approach allows a much simpler design compared to the traditional method.

Continue reading “Poor Man’s Time Domain Reflectometer”

Snake On A BBC Micro:bit

The first of the BBC Micro Bits are slowly making their ways into hacker circulation, as is to be expected for any inexpensive educational gadget (see: Raspberry Pi). [Martin] was able to get his hands on one and created the “hello world” of LED displays: he created a playable game of snake that runs on this tiny board.

For those new to the scene, the Micro Bit is the latest in embedded ARM systems. It has a 23-pin connector for inputs and outputs, it has Bluetooth and USB connectivity, a wealth of sensors, and a 25-LED display. That’s small for a full display but it’s more than enough for [Martin]’s game of snake. He was able to create a hex file using the upyed tool from [ntoll] and upload it to the Micro Bit. Once he worked out all the kinks he went an additional step further and ported the game to Minecraft and the Raspberry Pi Sense HAT.

[Martin] has made all of the code available if you’re lucky enough to get your hands on one of these. Right now it seems that they are mostly in the hands of some UK teachers and students, but it’s only a matter of time before they become as ubiquitous as the Raspberry Pi or the original BBC Micro.  It already runs python, so the sky’s the limit on these new boards.

Continue reading “Snake On A BBC Micro:bit”