[Afrotech]‘s Guide To Class D Amplifiers

classd

Hang around in any of the many guitar or audiophile forums or discussion boards for long enough, and eventually you’ll come across the arguments over amplifier topologies. One of the more interesting and useful of these classes of amplifier is class d – they’re extremely efficient and when well designed can sound pretty good. [Afrotech] is here to show you how they work, and how to build a 15 Watt amp using a $3 class d amplifier chip.

The very definition of an amplifier is taking a low power signal and transforming it into a high power signal. A great way to modulate a high power signal very quickly is by modulating a square wave with pulse width modulation. A class d amplifier takes a low power input signal, uses it to modulate the duty cycle of a high power square wave, and with a little filtering, amplifies the low power input.

To demo this, [Afrotech] used TI’s TPA3122 class d amplifier chip. It’s a pretty cheap chip for being a 15 Watt stereo amplifier, and the circuit is simple enough to build on a breadboard. With a few caps, resistors, and a pair of inductors, [Afrotech] built this one-chip amplifier that’s capable of powering some pretty big speakers. It’s also very efficient – no heat sink required.

Although class d amps are extremely efficient. there are a few people out there that say because the amplifier is basically a filtered square wave, you’ll be able to hear a difference in the audio over class a or class ab amplifiers. This led to the development of class t amplifiers, basically a class d amp with a higher switching speed (Megahertz for class t, a few hundred kilohertz for class d). Still, if you need a cheap amplifier for a DIY boombox or any other high power application, you could do a lot worse than a simple class d amp.

[Read more...]

Keep those filaments lit, Design your own Vacuum Tube Audio Equipment

Vacuum Tubes Glowing RedIt was a cold January Saturday night in Chicago and we had big plans. Buddy Guy’s Legends bar was packed. We setup directly under one of the PA speakers less than 15′ from the stage. Time to celebrate. Skip the glass, one pitcher each and keep them coming. We’re about to make bootleg recording history. Conversation evolved into bloviation on what our cover art would look like, certainly it would be a photo of our battery powered tube mic pre-amp recently created in my basement lab. We had four hours to kill before Buddy’s appearance. Our rate of Goose Island and Guinness consumption would put us at three-sheets to the wind by 11. Must focus. It’s time, Buddy was on. Much fumbling about and forgetting how to turn on the Japanese-made 24 bit digital recorder with its nested LCD menus, cryptic buttons, and late 90’s firmware. Make it work. We did, just in time for the bouncers to notice the boom mike and battery packs. Wait, wait… maybe we should talk about why tube amps are worth this kind of trouble first.

Yes, vacuum tubes do sound better than transistors (before you hate in the comments check out this scholarly article on the topic). The difficulty is cost; tube gear is very expensive because it uses lots of copper, iron, often point-to-point wired by hand, and requires a heavy metal chassis to support all of these parts. But with this high cost comes good economic justification for building your own gear.

This is one of the last frontiers of do-it-yourself that is actually worth doing.

[Read more...]

The Tiny, Awesome Class D Amp

ClassD

In one of [Hans Peter]‘s many idle browsing sessions at a manufacturer’s website, he came across a very cool chip – a 10 Watt class D amplifier chip. After the sample order arrived, he quickly put this chip in a box and forgot about it. A year or so later, he was asked to construct a portable boom box kit for a festival. Time to break out that chip and make a small amplifier, it seems.

The chip in question – a Maxim MAX9768 – is a tiny chip, a 24-pin TQFP with 1mm pitch. Hard to solder freehand, but this chip does have a few cool features. It’s a filterless design, very easy to implement, and perfect for the mono boombox project he was working on. A simple, seven component circuit was laid out on a breadboard and [Hans] got this chip up and running.

For the festival, a breadboarded circuit wouldn’t do. He needed a better solution, something built on a PCB that would work well as a kit. The requirements included the MAX9768 chip, a guitar preamp, stereo to mono summing, and through-hole parts for easy soldering. The completed board ended up being extremely small – 33.6mm by 22.5mm – and works really great.

After the festival, [Hans] found a 20 Watt chip and designed an all-SMD version of the board. Just the thing if you ever want to stuff a tiny amplifier into a crevice of a project.

Retrotechtacular: Tube Amplifiers

retrotechtacular-how-tube-amps-work

It’s hard to beat this vintage reel for learning about how vacuum tube amplifiers work. It was put together by the US Army in 1963 (if we’re reading the MCMLXIII in the title slide correctly). If you have a basic understanding of electronics you’ll appreciate at least the first half of the video, but even the most learned of radio enthusiasts will find something of interest as they make their way through the 30-minute presentation.

The instruction begins with a description of how a carbon microphone works, how that is fed to a transformer, and then into the amplifier. The first stage of the tube amp is a voltage amplifier and you’ll get a very thorough demo of the input voltage swing and how that affects the output. We really like it that the reel discusses getting data from the tube manual, but also shows how to measure cut-off and saturation voltage for yourself. From there it’s off to the races with the different tube applications used to make class A, B, and C amplifiers. This quickly moves onto a discussion of the pros and cons of each amplifier type. See for yourself after the jump.

[Read more...]

Build a Simple Audio Amp

first-amp

[Ynze] has built an audio amplifier that looks and sounds great. His amplifier uses a National Instruments (now TI) LM3886 Overture series 68 Watt power amp. The LM3886 places [Ynze's] amp squarely in the “Gainclone” catagory. Gainclone or Chipamp are terms long used by the DIY community to describe audio amps based upon highly integrated semiconductor amplifiers. The Gainclone name stems from the original Gaincard audio amplifier sold by 47 labs. The Gaincard used less than $100 USD of parts when it was introduced in 1999. It sounded good enough to command a $3300 USD price tag on the audiophile market. The low parts count and simple construction spawned the audio DIY community to build their own versions of the Gaincard. Hundreds of variants exist now, and wading through the different versions can be a bit of a daunting task. [Ynze] found a basic design that works, and built from there.

One of the interesting things about [Ynze's] amp, as well as many of the Gainclones, is the fact that they use no circuit board. All wiring is done point to point. resistors are soldered directly to the pins of the amplifier chip. This can be some tricky soldering for beginners, but several PCB kits are available. [Ynze] built his amp in two cases. One case holds the power supply, and the other contains the amplifier itself. [Ynze] is using a large toroid transformer to drop his local 230V mains down to +25V and -25V. The amplifier circuit itself is simple – a few discrete components surround the LM3886 and it’s heat sink. [Ynze] also did some very nice carpentry work on his wood chassis. The resulting amp looks like it’s right out of the 1960’s – but hides 1990’s electronics inside.

[Read more...]

Cheap guitar amp repaired by replacing the distortion circuit

cheap-amp-distortion-repair

It’s an understatement that [Troy] is not impressed with the distortion circuitry built into this guitar amp. He picked it up for $40 on Kijiji (basically local classified ads run by eBay) so he wasn’t afraid to get elbow deep in its inner workings to see what was going on. It only took him a few minutes to solder together the distortion circuitry that fixed it. Figuring out what needed fixing is another story.

[Troy] uses some colorful language and metaphors to illustrate his disdain for the sound of the overdrive option. He hooked it up to an oscilloscope and his trained eye immediately tells him that it’s not working as it should. After studying the PCB and working out a schematic he reworked the circuit with this pair of diodes and a resistor. It still uses a bit of filtering on the board, but does away with all of the other cruft. What remains is a cheap amp, but one that actually functions.

 

Measuring tiny current with high resolution

measuring-microamps-at-3MHz

[Paul] knew that he could get an oscilloscope that would measure the microamp signals with the kind of resolution he was after, but it would cost him a bundle. But he has some idea of how that high-end equipment does things, and so he just built this circuit to feed precision data to his own bench equipment.

He’s trying to visualize what’s going on with the current draw of a microcontroller at various points in its operation. He figures 5 mA at 2.5 mV is in the ballpark of what he’s probing. Measurements this small have problems with noise. The solution is the chip on the green breakout board. It’s not exactly priced to move, costing about $20 in single quantity. But when paired with a quality power supply it gets the job done. The AD8428 is an ultra-low-noise amplifier which has way more than the accuracy he needs and outputs a bandwidth of 3.5 MHz. Now the cost seems worth it.

The oscilloscope screenshot in [Paul's] post is really impressive. Using two 1 Ohm resistors in parallel on the microcontroller’s power line he’s able to monitor the chip in slow startup mode. It begins at 120 microamps and the graph captures the point at which the oscillator starts running and when the system clock is connected to it.