Turntable Spins Color And Sound Together

If you can’t grow your own synesthesia, buying electronics to do it for you is fine. Such is the case with the CHROMATIC by [Xavier Gazon], an artist who turns all kinds of electronics into circuit-bent musical art pieces. His project turns an old Philips Music 5120 turntable into a colorful MIDI sequencer, inspired by older 20th century instruments such as the Optophonic Piano and the Luminaphone.

The CHROMATIC uses colored pucks placed on a converted turntable to perform a looping sequence of chords in a given musical scale, generating MIDI data as output. Where its inspirations used primitive optics as their medium, this project employs a Teensy microcontroller and two modern optical sensors to do the work. One of these is a simple infrared sensor which tracks a white spot on the edge of the turntable, generating a MIDI clock signal to keep everything quantized and in sync. The other is a color sensor mounted on the tone arm, which can tell what color it sees and the height of the arm from the turntable.

While the instrument is still in beta testing phase details on how notes are generated aren’t yet given, though the general idea is that they are dictated by the color the tone arm sees and its position above the platter. Moving the tone arm changes which pucks it tracks, and the speed of the turntable can also be adjusted, changing how the melody sounds.​

The CHROMATIC is a very interesting project, but it’s not the first optical-based turntable hack we’ve seen here. We’ve also seen a much weirder use for a color sensor, too. Check out the video of this one in action after the break.

Continue reading “Turntable Spins Color And Sound Together”

An All-Electric Plane Takes To The Skies

With climate protests and airline strikes occurring around the world, there is more awareness than ever before for the necessity of environmental sustainability. More importantly, there is more discussion around the immense carbon footprint left by the airline industry, perhaps one of the largest contributors to climate change worldwide.

The Slovenian-based Pipistrel ALPHA Electro is one of the leading electric planes today, with bragging rights as the world’s first mass-produced electric aircraft. While NASA may have announced their X-57 Maxwell, the plane is still undergoing testing for its first planned flight in 2020. The ALPHA Electro, marketed as a trainer plane for flight students and recreational flyers, features a 34’6″ wingspan and low running costs.

The two-person flyer is equipped with a 60 kW electric motor, with a cruising speed of about 157 km/hr. A 21 kW battery provides the plane with enough energy for a 55 minute flight, with a half hour reserve, and takes about an hour to charge back up. An additional perk of flying an electric plane is the low noise and zero CO2 emissions, which allows the flights to take place near large cities with exhaust and noise emission standards.

With airplanes, a majority of the fuel is used for takeoff and landing, making short haul flights particularly troublesome – compare 107 lbs CO2 flying from New York to Boston versus 62 lbs CO2 driving. While refraining from frequent flights is still the best idea for reducing your carbon footprint, we’re hopefully headed towards more environmentally-friendly options for air travel.

Check out the ALPHA Electro’s teaser video below.

Continue reading “An All-Electric Plane Takes To The Skies”

Horse Racing Game Hits Trifecta Of Fun, Skill, And Competition

Out in the neon-painted desert of Las Vegas, if you know where to look, you can find an old, 1980s electromechanical horse racing game called Sigma Derby. In this group game, you and several drunk strangers sit around a machine the size of a pool table and bet on tiny horses at 25 cents a throw. There is no skill involved, it’s all chance. This is not that game.

[Alex Kov]’s electromechanical horse racing game is a unicorn compared to Sigma Derby, or at least a zebra. This game takes patience, skill, and cunning. And unlike Sigma Derby, you can easily replicate it at home with a few shakes of the old junk bin. You just need a couple of motors, transistors, electrolytic caps, and some passives.

The idea is simple — advance horse, be first, win prizes — but it’s not that easy. While the switch is unpressed, the circuit charges up a capacitor. Press it and the horse noses forward, draining the cap. There is never enough chooch in the cap to reach the finish line, so the real game is in building up more juice than the other guy, and then staying ahead or overtaking him with the next spurt. Place your bets and catch the action after the break.

A scoreboard would be a great addition to this game. If you want to keep it electromechanical, we have some tote board inspiration for you.

Continue reading “Horse Racing Game Hits Trifecta Of Fun, Skill, And Competition”

It’s A TV-Scope-Guitar Amplifier!

Guitar amplifiers are a frequent project, and despite being little more than a simple audio amplifier on paper, they conceal a surprising quantity of variables in search of a particular sound. We’ve seen a lot of them, but never one quite like [Nate Croson]’s CRT TV guitar amplifier. The LM386 doesn’t just drive the speaker, he’s also using it to turn the TV into a crude oscilloscope to form a visualisation of the sound.

The video showing this feat is below the break, and it puts us in a quandary due to being short on technical information. He’s driving the horizontal coils with the TV’s 50 Hz sawtooth field timebase, and the vertical ones with the audio from the LM386. We aren’t sure whether he’s rotated the yoke or whether the connections have been swapped, but the result is certainly impressive.

So given that there’s not quite as much technical detail as we’d like, why has this project captured our interest? Because it serves as a reminder that a CRT TV is a bit more than a useless anachronism, it’s a complex analogue device with significant and unique hacking potential. The older ones in particular provide endless possibilities for modification and circuit bending, and make for a fascinating analogue playground at a very agreeable price. It’s worth pointing out however that some of the voltages involved can make them a hazardous prospect for the unwary hacker. If you’re interested though, take a look at our dive into an older model.

Continue reading “It’s A TV-Scope-Guitar Amplifier!”

LEGO And Minecraft Team Up For Custom Gaming PC Case

There are probably few parents who haven’t watched their kids sitting on the floor, afloat on a sea of LEGO pieces and busily creating, and thought, “If only they could make a living at that.” But time goes on and kids grow up, and parents soon sing the same refrain as the kids sit transfixed by the virtual equivalent of LEGO: Minecraft.

Finding a way to monetize either LEGO or Minecraft is a bit difficult for the young enthusiast; combining both obsessions into a paying proposition would be a dream come true. [Mike Schropp] did it, and this Minecraft-themed LEGO computer case was the result. Intel wanted a LEGO case for their new NUC mini-PC motherboard, and as a sponsor of the Minefaire event, the case needed to be Minecraft themed.

[Mike] chose the block that any Enderman would choose: the basic grass block. Each of the ten cases he made for the show had about 1000 of the smallest LEGO pieces available, to recreate the texture of the grass block in all its faux 8-bit glory. The 4″ x 4″ (10cm x 10cm) 8th Gen NUC board was a great fit for the case, which included slots for ventilation and SD card access, plus pop-out covers to access the board’s ports. It’s not exactly a screamer, but playing Minecraft on a grass block made from LEGO bricks is probably worth the performance hit.

We’ve seen [Mike]’s work a time or two here, most recently with a full-scale LEGO rack-mount server. Our hats off to him for another fun and creative build, and for proving that you’re never too old to LEGO. Or Minecraft.

Proprietary Fan Blows, Gets PWM Upgrade

Proprietary components are the bane of anyone who dares to try and repair their own hardware. Nonstandard sizes, lack of labeling or documentation, and unavailable spare parts are all par for the course. [Jason] was unlucky enough to have an older Dell computer with a broken, and proprietary, cooling fan on it and had to make some interesting modifications to replace it.

The original fan had three wires and was controlled thermostatically, meaning that a small thermistor would speed up the the fan as the temperature increased. Of course, the standard way of controlling CPU fans these days is with PWM, so he built a circuit which essentially converts the PWM signal from the motherboard into a phantom thermistor. It’s even more impressive that it was able to be done with little more than a MOSFET and a Zener diode.

Unfortunately, there was a catch. The circuit only works one way, meaning the fan speed doesn’t get reported to the motherboard and the operating system thinks the fan has failed. But [Jason] simply disabled the warning and washed his hands of that problem. If you don’t want to use a CPU fan at all, you can always just dunk your entire computer in mineral oil.

Collapse OS, An OS For When The Unthinkable Happens

Decades of post-apocalyptic Hollywood movies have taught us that once all the trappings of our civilisation have been stripped away, it’s going to be kinda cool. We’re all going to wear slightly dusty looking 1980s motorcycling gear, and we’re going to drive really cool cars. Except of course Mad Max is fantasy, and the reality is likely to be unspeakbly grim. The future [Virgil Dupras] is anticipating is not a post-nuclear wasteland though, instead he’s trying to imagine what access to computing might look like in a world where the global supply chain has broken down. His solution is CollapseOS, an operating system designed for resilience and self-replication, that runs upon the minimal hardware of an 8-bit Z80.

It’s a pretty basic operating system so brace yourself if you are expecting a 64-bit fully multithreading kernel. Instead, you’re looking at a kernel, an assembler, and a text editor. One of the stated aims is that it can compile assembly language for a wide range of target CPUs, but it does not make it clear whether this means the OS itself will support those platforms. The self-replication is a fascinating feature though.

It’s an interesting question: what computing hardware would be available to the would-be hacker in a world in which all parts must be scavenged? The Z80 and other processors like it fit the bill admirably in one sense as it is possible to create a working computer using them with fairly minimal tools and knowledge, but we can’t help wondering whether the days when almost any electronic junk pile would contain one are now past. So what other easily accessible computing platforms might be created from post-apocalyptic junk in 2019? Remember, with no laptop and IDE you can’t just put an Arduino bootloader on that ATmega328 you desoldered from an old thermostat. As always the comments are open.

Image: Damicatz [CC BY 2.5].