We’re not sure if there’s any single characteristic that qualifies someone as a hacker. After all, we’re a pretty eclectic bunch, with skills that range all over the map, and what one person feels is trivial, others would look upon as black magic. But there’s one thing we’re sure of: if you find yourself reading the original POST code for the PC-XT motherboard just to get a keyboard working, you’re pretty much our kind of people.
That was the position [Anders Nielsen] found himself in as work progresses on his “PC-XT from Scratch” project, which seeks to build a working mid-80s vintage IBM Model 5160 using as many period-correct parts as possible. The first installment of the series featured the delicate process of bringing the motherboard up, lest the magic smoke was released. After seeing some life out of the old board, [Anders] needed a little IO, specifically video and keyboard. The video side of the equation was relatively trivial, with an early-90s VGA card from eBay — not exactly period correct, but good enough to get something to display. Continue reading “Connecting A Keyboard To A Vintage PC-XT, The Hard Way”→
If you zoom into the screen you are reading this on, you’d see an extremely fine pattern of red, green, and blue emitters, probably LEDs of some kind. This somewhat limits the resolution you can obtain since you have to cram three LEDs into each screen pixel. Engineers at MIT, however, want to do it differently. By growing thin LED films and sandwiching them together, they can produce 4-micron-wide LEDs that produce the full range of color, with each color part of a vertical stack of LEDs.
To put things in perspective, a standard TV LED is at least 200 microns across. Mini LEDs measure upwards of 100 microns, and micro LEDs are the smallest of all. A key factor for displays is the pitch — the distance from the center of one pixel to the center of the next. For example, the 44mm version of the Apple Watch has a pitch of around 77 microns. A Samsung Galaxy 10 is just over 46 microns. This is important because it sets the minimum size for a high-resolution screen, especially if you are building large screens (such as when you build custom video walls (see the video below for more about that).
[Jacek Fedorynski] had an old Magellan/SpaceMouse 3D mouse with a serial interface which made it impossible for him to use with modern hardware and software. The problem he faced was two pronged – the absence of serial interfaces in the hardware and the lack of appropriate drivers for the operating system. So he built a low cost, simple adapter to use his RS-232 Magellan/SpaceMouse with modern software.
The hardware required to build the adapter was minimal. A Raspberry Pi Pico, a MAX3238 based RS-232 adapter, a null modem adapter and a DB9 gender changer. Of course, a combination null modem – gender changer would have made things even simpler. Four of the GPIO pins from the Pico are mapped to the serial RX, TX, RTS and CTS pins.
On the software side, the code emulates a 3DConnexion SpaceMouse Compact, so it can be used with software like Fusion 360, 3ds Max, SolidWorks, Inventor, Maya and many others. On the host computer, only the standard 3DxWare driver package is needed. On the host computer, the old Magellan/SpaceMouse 3D will appear like a modern SpaceMouse Compact connected over USB. The only downside to this is that the SpaceMouse Compact has just two programmable buttons, so only two of the many buttons on the old Magellan mouse can be mapped.
Flashing the code to the Pico is also straightforward using the BOOTSEL mode. Hold down the BOOTSEL button when plugging in the Pico and it appears as a drive onto which you can drag a new UF2 file. Just drag-n-drop [Jacek]’s magellan.uf2 firmware and you’re done.
Camera shutter speed is an essential adjustment in photography – along with the aperture, the shutter moderates the amount of light entering the camera. Older cameras (and some newer ones) use mechanical shutters that creep out-of-spec over the years, so [Dean Segovis] built a handy shutter speed tester.
With just a handful of basic components, this project is a great one for beginners to sink their teeth into. The tester is based around a photoresistor that measures light from another source (a flashlight) that travels through the camera body. When the shutter on the camera is released, the shutter speed can be measured and displayed on the OLED screen. An Arduino naturally handles all the computational duties. The whole thing can be easily assembled on a breadboard in just a couple of minutes.
The original project by [hiroshootsfilm] is over on Project Hub, however [Dean] takes a deeper dive with some code troubleshooting, as well as trying out a variety of old film cameras with the breadboard tester. His testing revealed that the photoresistor was better able to detect shutter speed when the camera lens was removed, which is a hot tip for anyone else that wants to try this.
While it’s not surprising that these older cameras are having trouble with their mechanical shutters, this little tester would be an invaluable tool when it comes time to start tweaking shutter mechanisms. If this project has brought out the shutterbug in you, make sure to check out this brain transplant for a Polaroid 100-series Packfilm camera that we covered way back in 2011.
E-bikes can replace car trips for some people, and adding a solar panel can make the fun last longer. [Luke] did some heavy modifications to his RadWagon to make it better, stronger, and faster than it was before.
The first step was replacing the stock 750 W controller with a 1500 W model to give the motor twice the power. [Luke] plans to replace the motor if it gets fried pushing too much juice, but is planning on just being careful for now. To stop this super-powered ride, he swapped the stock mechanical discs out for a hydraulic set which should be more reliable, especially when loading down this cargo bike.
On top of these performance enhancements, he also added a 50 W solar panel and maximum power point tracking (MPPT) charge controller to give the bike a potential 50% charge every day. Along with the OEM kid carrier and roof, this bike can haul kids and groceries while laughing at any hills that might come its way.
The Boy Who Cried Wolf is a simple parable that teaches children the fatal risk of raising a false alarm. To do so is to risk one’s life when raising the alarm about a real emergency that may go duly ignored.
Today, we rarely fear wolves, and we don’t worry about them eating us, our sheep, or our children. Instead, we worry about bigger threats, like incoming nuclear weapons, tornadoes, and earthquakes. We’ve built systems to warn us of these calamities, and authorities take a very dim view of those who misuse these alarms. Fox did just that in a recent broadcast, using a designated alarm tone for an advert. This quickly drew the attention of the Federal Communication Commission. Continue reading “Fox Fined For Using EAS Tone In Football Ad”→
It’s been far too long since we’ve had an event in Europe, and we’re going to fix that right now. Hackaday Berlin 2023 will be a day-long conference full of great talks, badge hacking, music, art, madness, and gathering with your favorite hackers on Saturday, March 25.
But it doesn’t stop there. We’ll have a pre-event party Friday night, and then a bring-a-hack brunch on Sunday with further opportunities to show off whatever projects you’re bringing along, hack some more on the badge, wind down, and/or play together. So if your travel plans allow it, come in Friday mid-day and don’t schedule your return ticket until Sunday evening.
Cutting to the chase: early bird tickets are on sale right now, so go get one! But even if you miss out on those, and they’ll go like hotcakes, the regular tickets are well worth it. Everything is fully catered, the badge and the swag are phenomenal, and the talks will be first-rate.
Saturday’s main events will include a handful of fantastic invited guest talks, but also a few hours of Lightning Talks given by you – yes, you! If you’ve never attended a lightning talk, you get seven minutes to run through one of your favorite projects. We want to know what’s on your workbench right now, what new skills you’ve been teaching yourself, or the groundwork you’ve been laying for the next big project. It’s your chance to inspire everyone in the room – grab it.
Everyone asked us to do a second run of the 2022 Hackaday Supercon badge, and now we’ve got the perfect excuse! Designed by Voja Antonic, the badge is a standalone retrocomputer in the style of an Altair or similar, but it’s much more. Between blinking LEDs that display everything going on, down to the gates in the ALU, and a trimmed-down machine language, it’s an invitation to get deeply in touch with the machine. If you felt left out because you couldn’t travel to Pasadena last November, here’s your second chance.
And then there’s the crowd. Hackaday really is a global community of hackers, and Hackaday events tend to bring out the best. Even if you’re not planning to give a lightning talk (and you should!) be prepared to talk about what you’re doing, because everyone else there is just as interested in cool projects as you are. Hackaday Berlin will be a great opportunity to connect and reconnect with new and old friends alike. Come join us!
We’ll be following up with a speaker announcement next week, but if you have any questions, let us know in the comments below. Otherwise, we’ll see you in Berlin.