It’s Opposite Day For This Novel Wankel Engine

The Wankel engine seems to pop up in surprising places every so often, only to disappear into the ether before someone ultimately resurrects it for a new application and swears to get it right this time. Ultimately they come across the same problems that other Wankels suffered from, namely poor fuel efficiency and issues with reliability. They do have a surprising power-to-weight ratio and a low parts count, though, which is why people keep returning to this well, although this time it seems like most of the problems might have been solved simply by turning the entire design inside out.

A traditional Wankel engine has a triangular-shaped rotor that rotates around a central shaft inside an oval-shaped housing. This creates three chambers which continually revolve around inside the engine as the rotor spins. The seals that separate the chambers are notoriously difficult to lubricate and maintain. Instead of using a rotor inside of a chamber, this design called the X-Engine essentially uses a chamber inside of a rotor, meaning that the combustion chamber and the seals stay in fixed locations instead of spinning around. This allows for much better lubrication of the engine and also much higher efficiency. By flipping the design on its head it is able to maintain a low moving parts count, high compression ratio, and small power-to-weight ratio all while improving reliability and performance and adding the ability to directly inject fuel rather than rely on carburetion or other less-ideal methods of fuel delivery that other Wankels require.

Astute internal combustion aficionados will note that this engine is still of a two-stroke design, and thus not likely to fully eliminate the emissions problems with Wankels in a way that is satisfactory to regulators of passenger vehicles. Instead, the company is focusing on military, commercial, and aerospace applications where weight is a key driver of design. We’ve seen time and time again how the Wankel fails to live up to its promises though, and we hope that finally someone has cracked the code on one that solves its key issues.

Electric Volkswagen Adds Rooftop Solar

Volkswagen has continually teased the release of a new Microbus in the same way that Duke Nukem Forever strung us all along in the 00s, but unlike the fated video game it seems as though Volkswagen is finally building a hip new van rather than continually teasing its release year after year. With the clunky name of I.D. Buzz, European drivers can expect to see them later this year while those in the North American market will have to wait until 2024. That release will have a camper-equipped option though, but you may also want to equip yours with some solar panels as well.

The German tuning shop ABT is behind this design, which adds 600 watts of solar fixed to the top of the van. The solar roof will generate electricity largely to power the van’s auxiliary systems and is being aimed at those who are looking to outfit this van as a camper and need something to power things like refrigerators, interior lighting, and various electronics while on extended stays. There is also some mention of a 1000 watt option but with the limited space available on the roof may involve a side panel of some sort.

ABT is also noting that this system can be used to extend the driving range and, while technically true, don’t expect to be driving an I.D. Buzz on entirely solar power unless you’re willing to let it sit to charge the battery for days at a time. Like other solar installations on vehicles we’ve seen from various ingenious builders, the lack of real estate available on passenger vehicles limits their use largely to auxiliary electrical loads, but it can be possible to drive a vehicle on solar energy alone with the right design.

There’s Cash In Them Old Solar Panels

The first solar panels may have rolled out of Bell Labs in the 1950s, with major press around their inconsistent and patchy adoption in the decades that followed, but despite the fanfare they were not been able to compete on a price per kilowatt compared to other methods of power generation until much more recently. Since then the amount of solar farms has increased exponentially, and while generating energy from the sun is much cleaner than most other methods of energy production and contributes no greenhouse gasses in the process there are some concerns with disposal of solar panels as they reach the end of their 30-year lifespan. Some companies are planning on making money on recycling these old modules rather than letting them be landfilled. Continue reading “There’s Cash In Them Old Solar Panels”

Disabling Intel’s Backdoors On Modern Laptops

Despite some companies making strides with ARM, for the most part, the desktop and laptop space is still dominated by x86 machines. For all their advantages, they have a glaring flaw for anyone concerned with privacy or security in the form of a hardware backdoor that can access virtually any part of the computer even with the power off. AMD calls their system the Platform Security Processor (PSP) and Intel’s is known as the Intel Management Engine (IME).

To fully disable these co-processors a computer from before 2008 is required, but if you need more modern hardware than that which still respects your privacy and security concerns you’ll need to either buy an ARM device, or disable the IME like NovaCustom has managed to do with their NS51 series laptop.

NovaCustom specializes in building custom laptops with customizations for various components and specifications to fit their needs, including options for the CPU, GPU, RAM, storage, keyboard layout, and other considerations. They favor Coreboot as a bootloader which already goes a long way to eliminating proprietary closed-source software at a fundamental level, but not all Coreboot machines have the IME completely disabled. There are two ways to do this, the HECI method which is better than nothing but not fully trusted, and the HAP bit, which completely disables the IME. NovaCustom is using the HAP bit approach to disable the IME, meaning that although it’s not completely eliminated from the computer, it is turned off in a way that’s at least good enough for computers that the NSA uses.

There are a lot of new computer manufacturers building conscientious hardware nowadays, but (with the notable exception of System76) the IME and PSP seem to be largely ignored by most computing companies we’d otherwise expect to care about an option like this. It’s certainly still an area of concern considering how much power the IME and PSP are given over their host computers, and we have seen even mainline manufacturers sometimes offer systems with the IME disabled. The only other options to solve this problem are based around specific motherboards for 8th and 9th generation Intel desktops, or you can go way back to hardware from 2008 and install libreboot to eliminate, rather than disable, the IME.

Thanks to [Maik] for the tip!

IBM Selectric Typewriters Finally Get DIY Typeballs

IBM’s Selectric line of typewriters were quite popular in the 1960s, thanks in part to an innovation called the typeball which allowed for easy font changes on a single machine. Unfortunately, as if often the case when specialized components are involved, it’s an idea that hasn’t aged particularly well. The Selectric typewriters are now around 60 years old and since IBM isn’t making replacement parts, those restoring these machines have had to get somewhat creative like using a 3D printer to build new typeballs.

It sounds like it would be a simple, but much like the frustration caused with modern printers, interfacing automated computer systems with real-world objects like paper and ink is not often as straightforward as we would like. The main problem is getting sharp edges on the printed characters which is easy enough with metal but takes some more finesse with a printed plastic surface. For the print, each character is modelled in OpenSCAD and then an automated process generates the 3D support structure that connects the character to the typeball.

This process was easier for certain characters but got more complicated for characters with interior sections or which had a lot of sharp angles and corners. Testing the new part shows promise, although the plastic components will likely not last as long as their metal counterparts. Still, it’s better than nothing.

Regular Hackaday readers may recall that the ability to 3D print replacement Selectric typeballs has been on the community’s mind for years. When we last covered the concept in 2020 we reasoned that producing them on resin printers might be a viable option, and in the end, that does indeed seem to have been the missing element. In fact, this design is based on that same one we covered previously — it’s just taken this long for desktop resin 3D printing technology to mature enough.

Your Multimeter Might Be Lying To You

Multimeters are indispensable tools when working on electronics. It’s almost impossible to build any but the most basic of circuits without one to test and troubleshoot potential issues, and they make possible a large array of measurement capabilities that are not easily performed otherwise. But when things start getting a little more complex it’s important to know their limitations, specifically around what they will tell you about circuits designed for high frequency. [watersstanton] explains in this video while troubleshooting an antenna circuit for ham radio.

The issue that often confuses people new to radio or other high-frequency projects revolves around the continuity testing function found on most multimeters. While useful for testing wiring and making sure connections are solid, they typically only test using DC. When applying AC to the same circuits, inductors start to offer higher impedance and capacitors lower impedance, up to the point that they become open and short circuits respectively. The same happens to transformers, but can also most antennas which often look like short circuits to ground at DC but can offer just enough impedance at their designed frequency to efficiently resonate and send out radio waves.

This can give some confusing readings, such as when testing to make sure that a RF connector isn’t shorted out after soldering it to a coaxial cable for example. If an antenna is connected to the other side, it’s possible a meter will show a short at DC which might indicate a flaw in the soldering of the connector if the user isn’t mindful of this high-frequency impedance. We actually featured a unique antenna design recently that’s built entirely on a PCB that would show this DC short but behaves surprisingly well when sending out WiFi signals.

Continue reading “Your Multimeter Might Be Lying To You”

Pi Microcontroller Still Runs A Webserver

At first glance, the Raspberry Pi Pico might seem like a bit of a black sheep when compared to the other offerings from the Raspberry Pi Foundation. While most of the rest of their lineup can run Linux environments with full desktops, the Pico is largely limited to microcontroller duties in exchange for much smaller price tags and footprints. But that doesn’t mean it can’t be coerced into doing some of the things we might want a mainline Pi to do, like run a web server.

The project can run a static web page simply by providing the Pico with the project code available on the GitHub page and the HTML that you’d like the Pico to serve. It can be more than a static web page though, as it is also capable of running Python commands through the web interface as well. The server can pass commands from the web server and back as well, allowing for control of various projects though a browser interface. In theory this could be much simpler than building a physical user interface for a project instead by offloading all of this control onto the web server instead.

The project not only supports the RP2040-based Raspberry Pi Pico but can also be implemented on other WiFi-enabled microcontroller boards like the ESP8266 and ESP32. Having something like this on hand could greatly streamline smaller projects without having to reach for a more powerful (and more expensive) single-board computer like a Pi 3 or 4. We’ve seen some other builds on these boards capable of not only running HTML and CSS renderers, but supporting some image formats as well.

Continue reading “Pi Microcontroller Still Runs A Webserver”