Exploring The Hall Effect For Haptic Feedback PS4 Joysticks

Modern gaming console controllers aren’t without their annoyances — Joy-Con drift, anyone? The problems might stem from design deficiencies, but we suspect that user enthusiasm and the mechanical stress it can introduce might play a significant role as well. Either way, [Marius Heier] decided to take a look at what would be required to build a better joystick and came up with some interesting results.

The first video below lays the basic groundwork, with a bunch of experiments with 3-axis Hall effect sensors, specifically the Texas Instruments TMAG5273 and TMAG5170. They’re essentially the same sensor with different interfaces — SPI for the 5170 and I2C for the 5273. Using just one of these sensors, he was able to build a joystick with the usual X- and Y- axis control, but also with a rotary axis. What’s more, he built a motorized version using two NEMA 17 steppers to mechanically drive the stick back to center.

The joystick is bulky, but it looks like he’s got plans for a much smaller one with [Carl Bugeja]-style PCB motors that should fit into a PS4 controller. That’s the subject of the second video below, which uses a different Hall sensor — an Allegro A1304 — and is mainly concerned with getting the output of a non-motorized but considerably miniaturized joystick stick talking the language that the controller expects. It’s not a simple process, but it seems to be coming along nicely, and we’ll be watching progress closely.

Continue reading “Exploring The Hall Effect For Haptic Feedback PS4 Joysticks”

Broken Genes And Scrambled Proteins: How Radiation Causes Biological Damage

If decades of cheesy sci-fi and pop culture have taught us anything, it’s that radiation is a universally bad thing that invariably causes the genetic mutations that gifted us with everything from Godzilla to Blinky the Three-Eyed Fish. There’s a kernel of truth there, of course. One only needs to look at pictures of what happened to Hiroshima survivors or the first responders at Chernobyl to see extreme examples of what radiation can do to living tissues.

But as is usually the case, a closer look at examples a little further away from the extremes can be instructive, and tell us a little more about how radiation, both ionizing and non-ionizing, can cause damage to biochemical structures and processes. Doing so reveals that, while DNA is certainly in the crosshairs for damage by radiation, it’s not the only target — proteins, carbohydrates, and even the lipids that form the membranes within cells are subject to radiation damage, both directly and indirectly. And the mechanisms underlying all of this end up revealing a lot about how life evolved, as well as being interesting in their own right.

Continue reading “Broken Genes And Scrambled Proteins: How Radiation Causes Biological Damage”

Smart Bike Suspension Tunes Your Ride On The Fly

Riding a bike is a pretty simple affair, but like with many things, technology marches on and adds complications. Where once all you had to worry about was pumping the cranks and shifting the gears, now a lot of bikes have front suspensions that need to be adjusted for different riding conditions. Great for efficiency and ride comfort, but a little tough to accomplish while you’re underway.

Luckily, there’s a solution to that, in the form of this active suspension system by [Jallson S]. The active bit is a servo, which is attached to the adjustment valve on the top of the front fork of the bike. The servo moves the valve between fully locked, for smooth surfaces, and wide open, for rough terrain. There’s also a stop in between, which partially softens the suspension for moderate terrain. The 9-gram hobby servo rotates the valve with the help of a 3D printed gear train.

But that’s not all. Rather than just letting the rider control the ride stiffness from a handlebar-mounted switch, [Jallson S] added a little intelligence into the mix. Ride data from the accelerometer on an Arduino Nano 33 BLE Sense was captured on a smartphone via Arduino Science Journal. The data was processed through Edge Impulse Studio to create models for five different ride surfaces and rider styles. This allows the stiffness to be optimized for current ride conditions — check it out in action in the video below.

[Jallson S] is quick to point out that this is a prototype, and that niceties like weatherproofing still have to be addressed. But it seems like a solid start — now let’s see it teamed up with an Arduino shifter.

Continue reading “Smart Bike Suspension Tunes Your Ride On The Fly”

Vintage Electronics Hack Chat

Join us on Wednesday, January 25 at noon Pacific for the Vintage Electronics Hack Chat with Keri Szafir!

The world of the hardware hacker is filled with smells. The forbidden but enticing waft of solder smoke, the acrid bite of the Magic Blue Smoke, the heady aroma of freshly greased gears, the unmistakable smell of hot metal — they all tell a story, sometimes good, sometimes bad.

But the smell inside a piece of vintage electronics? Now that’s a complicated story indeed. It might be the wax of the old capacitors, the resinous scent of well-baked resistors, the enameled wire in transformers, or just the smell of the hot glass of the vacuum tubes. Whatever it is, once you smell it, you’ll never forget it

join-hack-chatFor some of us, that first whiff starts a lifelong passion for vintage gear. Keri Szafir knows quite well what it’s like to be bitten by the vintage bug, so much so that she goes by “The Vacuum Tube Witch” over on her YouTube channel. Her projects include repairs and restorations of vintage amps and radios, and even new builds with old tubes. She’ll stop by the Hack Chat to talk about vintage electronics, tube hoarding collecting, and even her new interest in retro display technologies. Where there’s a tube, there’s a way!

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, January 25 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Inside Globus, A Soviet-Era Analog Space Computer

Whenever [Ken Shirriff] posts something, it ends up being a fascinating read. Usually it’s a piece of computer history, decapped and laid bare under his microscope where it undergoes reverse engineering and analysis to a degree that should be hard to follow, but he still somehow manages to make it understandable. And the same goes for this incredible Soviet analog flight computer, even though there’s barely any silicon inside.

The artifact in question was officially designated the “Индикатор Навигационный Космический,” which roughly translates to “space navigation indicator.” It mercifully earned the nickname “Globus” at some point, understandable given the prominent mechanized globe the device features. Globus wasn’t actually linked to any kind of inertial navigation inputs, but rather was intended to provide cosmonauts with a visual indication of where their spacecraft was relative to the surface of the Earth. As such it depended on inputs from the cosmonauts, like an initial position and orbital altitude. From there, a complicated and absolutely gorgeous gear train featuring multiple differential gears advanced the globe, showing where the spacecraft currently was.

Those of you hoping for a complete teardown will be disappointed; the device, which bears evidence of coming from the time of the Apollo-Soyuz collaboration in 1975, is far too precious to be taken to bits, and certainly looks like it would put up a fight trying to get it back together. But [Ken] still manages to go into great depth, and reveals many of its secrets. Cool features include the geopolitically fixed orbital inclination; the ability to predict a landing point from a deorbit burn, also tinged with Cold War considerations; and the instrument’s limitations, like only supporting circular orbits, which prompted cosmonauts to call for its removal. But versions of Globus nonetheless appeared in pretty much everything the Soviets flew from 1961 to 2002. Talk about staying power!

Sure, the “glass cockpit” of modern space vehicles is more serviceable, but just for aesthetics alone, we think every crewed spacecraft should sport something like Globus. [Ken] did a great job reverse-engineering this, and we really appreciate the tour. And from the sound of it, [Curious Marc] had a hand in the effort, so maybe we’ll get a video too. Fingers crossed.

Thanks to [saintaardvark] for the tip.

Hackaday Links Column Banner

Hackaday Links: January 22, 2023

The media got their collective knickers in a twist this week with the news that Wyoming is banning the sale of electric vehicles in the state. Headlines like that certainly raise eyebrows, which is the intention, of course, but even a quick glance at the proposed legislation might have revealed that the “ban” was nothing more than a non-binding resolution, making this little more than a political stunt. The bill, which would only “encourage” the phase-out of EV sales in the state by 2035, is essentially meaningless, especially since it died in committee before ever coming close to a vote. But it does present a somewhat lengthy list of the authors’ beefs with EVs, which mainly focus on the importance of the fossil fuel industry in Wyoming. It’s all pretty boneheaded, but then again, outright bans on ICE vehicle sales by some arbitrary and unrealistically soon deadline don’t seem too smart either. Couldn’t people just decide what car works best for them?

Speaking of which, a man in neighboring Colorado might have some buyer’s regret when he learned that it would take five days to fully charge his brand-new electric Hummer at home. Granted, he bought the biggest battery pack possible — 250 kWh — and is using a standard 120-volt wall outlet and the stock Hummer charging dongle, which adds one mile (1.6 km) to the vehicle’s range every hour. The owner doesn’t actually seem all that surprised by the results, nor does he seem particularly upset by it; he appears to know enough about the realities of EVs to recognize the need for a Level 2 charger. That entails extra expense, of course, both to procure the charger and to run the 240-volt circuit needed to power it, not to mention paying for the electricity. It’s a problem that will only get worse as more chargers are added to our creaky grid; we’re not sure what the solution is, but we’re pretty sure it’ll be found closer to the engineering end of the spectrum than the political end.

Continue reading “Hackaday Links: January 22, 2023”

Internal Heating Element Makes These PCBs Self-Soldering

Surface mount components have been a game changer for the electronics hobbyist, but doing reflow soldering right requires some way to evenly heat the board. You might need to buy a commercial reflow oven — you can cobble one together from an old toaster oven, after all — but you still need something, because it’s not like a PCB is going to solder itself. Right?

Wrong. At least if you’re [Carl Bugeja], who came up with a clever way to make his PCBs self-soldering. The idea is to use one of the internal layers on a four-layer PCB, which would normally be devoted to a ground plane, as a built-in heating element. Rather than a broad, continuous layer of copper, [Carl] made a long, twisting trace covering the entire area of the PCB. Routing the trace around vias was a bit tricky, but in the end he managed a single trace with a resistance of about 3 ohms.

When connected to a bench power supply, the PCB actually heats up quickly and pretty evenly judging by the IR camera. The quality of the soldering seems very similar to what you’d see from a reflow oven. After soldering, the now-useless heating element is converted into a ground plane for the circuit by breaking off the terminals and soldering on a couple of zero ohm resistors to short the coil to ground.

The whole thing is pretty clever, but there’s more to the story. The circuit [Carl] chose for his first self-soldering board is actually a reflow controller. So once the first board was manually reflowed with a bench supply, it was used to control the reflow process for the rest of the boards in the batch, or any board with a built-in heating element. We expect there will be some limitations on the size of the self-soldering board, though.

We really like this idea, and we’re looking forward to seeing more from [Carl] on this.

Continue reading “Internal Heating Element Makes These PCBs Self-Soldering”