This Week In Security: NetUSB, HTTP.sys, And 2013’s CVE Is Back

Let’s imagine a worst case situation for home routers. It would have to start with a port unintentionally opened to the internet, ideally in a popular brand, like Netgear. For fun, let’s say it’s actually a third-party kernel module, that is in multiple router brands. This module would then need a trivial vulnerability, say an integer overflow on the buffer size for incoming packets. This flaw would mean that the incoming data would write past the end of the buffer, overwriting whatever kernel data is there. So far, this exactly describes the NetUSB flaw, CVE-2021-45608.

Because red teams don’t get their every wish, there is a catch. While the overflow is exceptionally easy to pull off, there isn’t much wiggle room on where the data gets written. There’s no remote code execution Proof of Concept (PoC) yet, and [Max Van Amerongen], who discovered the flaw, says it would be difficult but probably not impossible to pull off. All of this said, it’s a good idea to check your router for open ports, particularly non-standard port numbers. If you have a USB port on your router, check for updates.

Windows HTTP.sys Problem

A serious problem has been announced in Windows Server 2019 and Windows 10, with some versions vulnerable in their default configurations. The problem is in how Windows handles HTTP Trailer packets, which contain extra information at the end of normal HTTP transfers. There is a PoC available that demonstrates a crash. It appears that an additional information leak vulnerability would have to be combined with this one to produce a true exploit. This seems to be a different take on CVE-2021-31166, essentially exploiting the same weakness, and working around the incomplete fix. This issue was fixed in the January patch set for Windows, so make sure you’re covered. Continue reading “This Week In Security: NetUSB, HTTP.sys, And 2013’s CVE Is Back”

Cyberdeck

This End Times Cyberdeck Is Apocalypse-Ready

In the cyberdeck world, some designs are meant to evoke a cyberpunk vibe, an aesthetic that’s more lighthearted than serious. Some cyberdecks, though, are a little more serious about hardening their designs against adverse conditions. That’s where something like the ARK-io SurvivalDeck comes into play.

Granted, there does seem to be at least a little lightheartedness at play with the aptly named [techno-recluse]’s design. It’s intended to be an “Apocalypse Repository of Knowledge”, which may be stretching the point a bit. But it does contain an impressive amount of tech —  wide-band software defined radio (SDR) covering HF to UHF, GPS module, a sensor for air pressure, temperature, and humidity, and a Raspberry Pi 3B running Kali Linux. Everything is housed in a waterproof ammo can; a 3D printed bezel holds an LCD touchscreen and a satisfying array of controls, displays and ports. The lid of the ammo can holds a keyboard, which was either custom-made to precisely fit the lid or was an incredibly lucky find.

There’s a lot to like about this build, but our favorite part is the external dipole for receiving NOAA weather satellite imagery. The ability to monitor everything from the ham bands to local public service channels is a nice touch too. And we have no complaints about the aesthetics or build quality either. This reminds us of an earlier cyberdeck with a similar vibe, but with a more civilian flavor.

Thanks to [Kate] for the tip.

[via Tom’s Hardware]

Affordable HF Loop Antenna Reviewed

Modern ham radio operators often face restrictions on antennas. This has made small antennas more popular, despite some limitations. [Tech Minds] reviews the GA-450 indoor active HF loop antenna and finds it better than expected. You can see the video review below.

You can’t expect a little antenna to perform as well as giant skyhook. However, for such a small loop covering 3 to 30 MHz, the antenna seems to perform very well. We like that the active part of it has a rechargeable battery. Obviously, you will only want to use this antenna for receiving, but it would be a great pairing for an HF-capable software defined radio (SDR). Even just in the window sill with half gain, it was able to pick up quite a bit of signal on the 40 meter and 20 meter ham bands. According to the video, performance below 7 MHz was lackluster, but it worked nicely at higher frequencies.

The loop is directional and you can rotate the loop on the base to zero in on a particular signal. Of course, if the antenna were up in the air, it might be harder to rotate unless you work out something with a motor. If all you want to do is receive and you have a budget of under $100, this looks like it would be a nice portable option.

You can build your own loop and loop-like antennas, of course. Some of them can be quite portable.

Continue reading “Affordable HF Loop Antenna Reviewed”

NTP Server Gets Time From Space

Cheap GPS units are readily available nowadays, which is great if you have something that needs to be very precisely located. Finding the position of things is one of many uses for GPS, though. There are plenty of ways to take advantage of some of the ancillary tools that the GPS uses to determine location. In this case it’s using the precise timekeeping abilities of the satellites to build a microsecond-accurate network time protocol (NTP) server.

GPS works by triangulating position between a receiver and a number of satellites, but since the satellites are constantly moving an incredibly precise timing signal is needed in order to accurately determine location from all of these variables. This build simply teases out that time information from the satellite network and ignores the location data. There are only two parts to this build, a cheap GPS receiver and a Raspberry Pi, but [Austin] goes into great detail about how to set up the software side as well including installing PPS, GPSd, and then setting up the actual NTP server on the Pi.

While this is an excellent way to self-host your own NTP server if you don’t have Internet access (or just want to do it yourself), [Austin] does note that this is probably overkill on timekeeping as far as accuracy goes. On the other hand, the Raspberry Pi has no built-in real time clock of its own, so this might actually be a cost-competitive way of timekeeping even when compared to something more traditional like a DS3231 RTC module.

Continue reading “NTP Server Gets Time From Space”

3D Printing Copper

People really want to 3D print metal, but while true metal printers exist, they still are expensive and out of reach of most hackers. However, even if you can afford an exotic printer or use metal-impregnated polymer, you don’t often see copper as a print material. Copper has high electrical and thermal conductivity which makes it very useful. But that thermal conductivity also makes it very difficult to print using any process that involves heating up the material and copper reflects common lasers used in the 3D printing process. However, a German company, Infinite Flex, is claiming a breakthrough that will allow printers that use a standard IR laser to produce copper parts. The material, Infinite Powder CU 01 is suitable for selective laser sintering and several other laser-based techniques.

The powder has 99.5% copper and particle sizes of between 10 and 45 microns. There are some copper alloys that reduce thermal conductivity to allow printing, but often the reason you want a copper part is for its thermal properties. A kilogram of the powder will set you back nearly $100, so it isn’t dirt cheap, but it isn’t astronomical, either.

Continue reading “3D Printing Copper”

All About Mecanum

If you’ve dealt with robots or other wheeled projects, you’ve probably heard of mecanum wheels. These seemingly magic wheels have the ability to move in any direction. If you’ve ever seen one, it is pretty obvious how it works. They look more or less like ordinary wheels, but they also have rollers that rotate off-axis by 45 degrees from the normal movement axis. This causes the wheel’s driving force to move at a 45 degree angle. However, there are a lot of details that aren’t apparent from a quick glance. Why are the rollers tapered? How do you control a vehicle using these wheels? [Lesics] has a good explanation of how the wheels work in a recent video that you can see below.

With four wheels, you can have a pair of wheels — one at the front right and one at the back left — that have a net force vector of +45 degrees. Then the other pair of wheels can be built differently to have a net force vector of -45 degrees. The video shows how moving some or all wheels in different directions can move the vehicle in many different directions.

Continue reading “All About Mecanum”

Wire EDM

Bringing The Power Of EDM To The Home Shop

When you see something made from metal that seems like it would be impossible to manufacture, chances are good it was made with some variety of electrical discharge machining. EDM is the method of choice for hard-to-machine metals, high aspect ratio hole drilling, and precise surface finishes that let mating parts slip together with almost zero clearance. The trouble is, EDM is a bit fussy, and as a result hasn’t made many inroads to the home shop.

[Action BOX] aims to change that with a DIY wire EDM machine. In wire EDM, a fine brass wire is used as an electrode to slowly erode metal in a dielectric bath. The wire is consumable, and has to constantly move from a supply spool through the workpiece and onto a takeup spool. Most of the build shown in the video below is concerned with the wire-handling mechanism, which is prototyped from 3D-printed parts and a heck of a lot of rollers and bearings. Maintaining the proper tension on the wire is critical, so a servo-controlled brake is fitted to the drivetrain, which itself is powered by a closed-loop stepper. Tension is measured by a pair of strain gauges and Arduinos, which control the position of the shaft brake servo and the speed of the motor on the takeup spool.

Unfortunately, in testing this setup proved to live up to EDM’s fussy reputation. The brass wire kept breaking as soon as cutting started, and [Action BOX] never made any actual cuts. There’s certainly promise, though, and we’re looking forward to developments. For more on EDM theory, check out [Ben Krasnow]’s look at EDM hole-drilling.

Continue reading “Bringing The Power Of EDM To The Home Shop”