The Most Useless Book Scanner

How do artificial intelligences get so intelligent? The same way we do, they get a library card and head on over to read up on their favorite topics. Or at least that’s the joke that [Jakob Werner] is playing with in his automaton art piece, “A Machine Learning” (Google translated here).

Simulating a reading machine, a pair of eyeballs on stalks scan left-right and slowly work their way down the page as another arm swings around and flips to the next one. It’s all done with hand-crafted wooden gears, in contrast to the high-tech subject matter. It’s an art piece, and you can tell that [Jakob] has paid attention to how it looks. (The all-wooden rollers are sweet.) But it’s also a “useless machine” with a punch-line.

Is it a Turing test? How can we tell that the machine isn’t reading? What about “real” AIs? Are they learning or do they just seem to be? OK, Google’s DeepMind is made of silicon and electricity instead of wood, but does that actually change anything? It’s art, so you get license to think crazy thoughts like this.

We’ve covered a few, less conceptual, useless machines here. Here is one of our favorite. Don’t hesitate to peruse them all.

LastPass Happily Forfeits Passwords To Simple Javascript

Lastpass is a great piece of software when it comes to convenience, but a recent simple hack shows just how insecure software like it can be. [Mathias Karlsson] nabbed a nice $1000 bounty for its discovery.

Lastpass’s auto-fill works by injecting some html into the website you’re visiting. It runs a bit of Javascript to parse the URL. However, the parsing script was laughably vague. By changing the URL of the page, inserting a few meaningless-to-the server slugs into the URL, an attacker could get Lastpass to give it a password and username combo for any website.

The discussion in the HackerNews comment section more-or-less unilaterally agreed that most systems like this have their glaring flaws, but that the overall benefits of having secure passwords generated and managed by software was still worth the risk when compared to having a few commonly reused passwords over multiple sites.

One could get a more secure key manager by using software like KeePass, but it’s missing some of the convenience factor of remote-based services and relies on a user protecting their key files adequately.

Still, as scary as they are, openly discussing hacks like this after responsible disclosure is good because they force companies like Lastpass, who have some very big name clients, to take their code review and transparency more seriously.

Hackaday Prize Entry: A Linear CCD Breakout

Linear CCDs are an exceptionally cool component. They can be used for DIY spectrometers, and if you’re feeling very adventurous, a homemade version of those crappy handheld scanners of the early 90s. Linear CCDs don’t see much use around these parts, though, which makes [esben]’s Hackaday Prize entry very cool. He’s building a breakout to make using these linear CCDs easier.

A linear CCD module looks like an overgrown DIP chip with a glass window right on top of a few thousand pixels laid out in a straight line. The data from these pixels isn’t output as a series of ones and zeros, though: its old school, and the data this CCD produces is analog. This means reading light from one of these modules requires a fast microcontroller with a good ADC.

For this project, [esben] is using a Nucleo F401RE, a development board built around an STM32F4 microcontroller. This processor is fast enough to read the data off its 12 bit ADC, and store all three thousand pixels. Now the problem is getting this data off the microcontroller and onto some storage. With a UART limited to 230kB/s, each ‘frame’ of the CCD takes 300ms to transfer to a computer. [esben] really wishes that could be done a little faster, so he’s trying to hack the DMA controller to do his bidding. It looks like [esben] is on track to make a fast interface for a very common linear CCD, which means more cool tools and toys for all of us.

You May Have A Nixie Tube Clock, But Can Yours Levitate?

Nixie tubes, electromagnets, levitation, and microcontrollers — this project has “Hackaday” written all over it!

Time Flies: Levitating Nixie Clock comes from [Tony Adams], and uses a lot of technology we’ve seen before, but in a new and interesting way. A nixie tube clock is nothing new, but using electromagnets to levitate it above a base certainly paired with inductive coupling to transmit power using no wires make this floating nixie build a real treat.

Continue reading “You May Have A Nixie Tube Clock, But Can Yours Levitate?”

Hackaday Links: July 31, 2016

Going to DEF CON this week? Getting into Vegas early? We’re having a meetup on Wednesday, in the middle of the day, in the desert. It’s all going down at the grave of James T. Kirk. Rumor has it, the Metrons will abduct a few of us and make us fight to the death on a planet with impossible geology.

The Hara Arena is closing down. The Hara Arena in Dayton, Ohio is the home of Hamvention, the largest gathering of amateur radio enthusiasts in the US. I was there last May, and I can assure you, the Hara Arena has fallen into a state of disrepair. The ARRL reports hamvention will be at a new venue next year. The last scheduled event, after which there will be an auction for venue equipment and furniture, will be on August 27th. It’ll be a comic book and toy show.

Hackaday.io has a log of projects. Some might say it has too many projects. The search is great, but sometimes you just want to look at a random project. That’s the problem [Greg] solved with his Hackaday.io randomizer. It returns a random Hackaday.io project, allowing you to gawk at all the boards and resistors found within.

Primitive Technology is a YouTube channel you should watch. It’s a guy (who doesn’t talk), building everything starting with pre-stone age technology. He built a house with a heated floor, somewhat decent pottery, and this week he entered the iron age. The latest video shows him building a squirrel cage fan out of clay and bark to smelt iron. The ore was actually iron-bearing bacteria, mixed with charcoal and wood ash, and placed into a crude but accurate smelting furnace. The end result is a few bb-sized grains of iron and a lot of melted flux. That’s not much, and is certainly not an accurate portrayal of what was being done 5,000 years ago, but it does mean the Internet’s favorite guy in the woods has entered the iron age while completely skipping over bronze.

Freeside Atlanta says they’re the largest hackerspace on the east coast, and to show off all the cool goings on, they made a walk through video.

Hackaday has a retro edition. It’s a wide selection of Hackaday posts presented in a format without JavaScript, CSS, ads, or any other Web 2.0 cruft. There’s an open challenge for anyone to load the retro site with a 4004 CPU. I know it can be done, but no one has presented evidence of doing it. [Lukas] just sent in his retro submission with a Z80 single board computer displaying some of the page on seven-segment displays. It’s basically a terminal emulator connected to a laptop that does most of the work, but this is the most minimal retro submission we’ve ever received.

Blindingly Fast ADC For Your BeagleBone

[Jason Holt] wrote in to tell about of the release of his PRUDAQ project. It’s a dual-channel 10-bit ADC cape that ties into the BeagleBone’s Programmable Realtime Units (PRUs) to shuttle through up to as much as 20 megasamples per second for each channel. That’s a lot of bandwidth!

The trick is reading the ADC out with the PRUs, which are essentially a little bit of programmable logic that’s built on to the board. With a bit of PRU code, the data can be shuttled out of the ADC and into the BeagleBone’s memory about as fast as you could wish. Indeed, it’s too fast for the demo code that [Jason] wrote, which can’t even access the RAM that fast. Instead, you’ll want to use custom kernel drivers from the BeagleLogic project (that we’ve covered here before).

But even then, if you don’t want to process the data onboard, you’ve got to get it out somehow. 100 mbit Ethernet gets you 11.2 megabytes per second, and a cherry-picked flash drive can save something like 14-18 megabytes per second. But the two 10-bit ADCs, running full-bore at 20 megasamples per second each, produces something like 50-80 megabytes per second. Point is, PRUDAQ is producing a ton of data.

So what is this cape useful for? It’s limited to the two-volt input range of the ADCs — you’ll need to precondition signals for use as a general-purpose oscilloscope. You can also multiplex the ADCs, allowing for eight inputs, but of course not at exactly the same time. But two channels at high bandwidth would make a great backend for a custom SDR setup, for instance. Getting this much ADC bandwidth into a single-board computer is an awesome trick that used to cost thousands of dollars.

We asked [Jason] why he built it, and he said he can’t tell us. It’s a Google Research project, so let the wild conjecture-fest begin!

Escalating To CNC Through Proxxon’s Tool Line

Proxxon is a mostly German maker of above average micro tools. They do sell a tiny milling machine in various flavors, from manual to full CNC. [Goran Mahovlić] did not buy that. He did, however, combine their rotary tool accessory catalog into a CNC mill.

Owning tools is dangerous. Once you start, there’s really no way to stop. This is clearly seen with Goran’s CNC machine. At first happiness for him was a small high speed rotary tool. He used it to drill holes in PCBs.

In a predictable turn of events, he discovered drilling tiny holes in PCBs by hand is tedious and ultimately boring. So he purchased the drill press accessory for his rotary tool.

Life was good for a while. He had all the tools he needed, but… wouldn’t it be better if he could position the holes more quickly. He presumably leafed through a now battered and earmarked Proxxon catalog and ordered the XY table.

A realization struck. Pulling a lever and turning knobs! Why! This is work for a robot, not a man! So he pestered his colleague for help and they soon had the contraption under CNC control.

We’d like to say that was the end of it, and that [Goran] was finally happy, but he recently converted his frankenmill to a 3D printer. We’ve seen this before. It won’t be long before he’s cleaning out his garage to begin the restoration and ultimate CNC conversion of an old knee mill. Videos after the break.

Continue reading “Escalating To CNC Through Proxxon’s Tool Line”