Hackaday Podcast Ep 232: Chaos Communications Camp Placeholder Edition

Editor-in-Chief Elliot Williams is off at Chaos Communications Camp, and Assistant Editor Tom Nardi is off on vacation, so there’s no real podcast this week.

If you need something to watch, let us suggest the talks!

Or listen to our pathetic excuses here:

Honestly, you’d be better off not downloading this one.

 

A series of tubes wound up and down as modules in a metal-framed, free-standing wall. The wall is inside a climate-controlled test chamber with a series of differently-colored tubes running behind the free-standing wall.

Cooling Off The Bus Stop

If you’ve taken the bus in the summer, you know it can get hot while you wait on your ride, even if there is a roof over the stop. Researchers at the University of Seville have devised a way to keep you cooler while you wait.

As temperatures around the world get warmer due to climate change, keeping cool in the summer is increasingly not just a matter of comfort. For the prototype in a climate-controlled chamber, 500L of water were cooled with a chiller and used as a thermal reservoir to reduce temps in the bus stop during the day. Pumps circulate the water through panels when a rider approaches the stop, cooling the space by ~8˚C (~14˚F) over a 20 minute period. Pumps for the system and lighting for the stop will be powered via solar panels and keep the system self-contained.

The amount of cooling offered by the system can be controlled by the flow rate of the water. The researchers plan to use Falling-Film radiant cooling in the outdoor version to replace the chiller to cool the water at night. They also say the system can be used for radiant heating in the winter, so it isn’t just for hot climates.

If you want to know how to survive a wet bulb event or want a better way to determine your bus route, we’ve got you covered there too.

[via Electrek]

This Week In Security: TunnelCrack, Mutant, And Not Discord

Up first is a clever attack against VPNs, using some clever DNS and routing tricks. The technique is known as TunnelCrack (PDF), and every VPN tested was vulnerable to one of the two attacks, on at least one supported platform.
Continue reading “This Week In Security: TunnelCrack, Mutant, And Not Discord”

Data Recovery In The Woodshed

A 1TB drive fails. How do you recover the data? If you are like us, you imagine a high-tech lab with serious-looking technicians and engineers. [John Graham-Cumming] managed it in his woodworking shop. Granted, it was a solid-state drive, so a clean room wasn’t necessary, but we still found it an unexpected story.

[John’s] gaming rig had two Seagate Firecuda 530 SSDs and decided not to boot. A quick analysis found one of the drives failed — it happens. However, the drive showed some signs of life after cooling off. A 30-minute trip to the freezer made the drive work again until it got warm again.

Continue reading “Data Recovery In The Woodshed”

Hackaday Prize 2023: Over-the-Top Programmable Resistor Looks The Part And Performs

Every once in a while we get wind of a project that we’re reluctant to write up for the simple reason that it looks too good to be true. Not that projects need to be messy to be authentic, mind you, but there are some that are just so finished and professional looking that it gives us a bit of pause. [Sebastian]’s programmable precision resistor is a shining example of such a project

While [Sebastian] describes this as “a glorified decade resistance box,” and technically that’s exactly right — at its heart it’s just a bunch of precision resistors being switched into networks to achieve a specific overall resistance — there’s a lot more going on here than just that. The project write-up, which has been rolling out slowly over the last month or so, has a lot of detail on different topologies that could have been used — [Sebastian] settled on a switched series network that only requires six relays per decade while also minimizing the contribution of relay contact resistance to the network. Speaking of which, there’s a detailed discussion on that subject, plus temperature compensation, power ratings, and how the various decades are linked together.

For as much that’s interesting about what’s under the hood, we’d be remiss to not spend a little time praising the exterior of this instrument. [Sebastian] appears to have spared no expense to make this look like a commercial product, from the rack-mount enclosure to the HP-esque front panel. The UI is all discrete pushbuttons and knobs with a long string of 16-segment LEDs — no fancy touch-screens here. The panel layout isn’t overly busy, and looks like it would be easy to use with some practice. We’d love to hear how the front and rear panel overlays were designed, too; maybe in a future project update.

This honestly looks like an instrument that you’d pay a princely sum to Keithley or H-P to own, at least back in the late 1990s or so. Kudos to [Sebastian] for the attention to detail here.

2023 Cyberdeck Contest: A Toddler’s Cyberdeck

[Josh] has a child and what do children like more than stuffing random things into their mouths? Pushing buttons, twiddling knobs, and yanking things of course! So [Josh] did what any self-respecting hacker would do and built his little man a custom cyberdeck.

The build follows the usual route of some electronics wedged into a pelican-style waterproof case — which is a good choice for this particular owner — a repurposed all-in-one LCD video player in the lid and a bunch of switches in the base. The player is apparently a V100-base SBC the likes of which are used in shops for those annoying looping promotional videos, but it doesn’t really matter if all it’s doing is being a focus point.

There is no connection from the base to the ‘display’ but that doesn’t matter here. The base is the fun part, with lots of old-school toggle switches and rotary knobs to play with and a load of LEDs to flash in mysterious ways. The guts of this are controlled via an Arduino Mega 2560, with copious amounts of hot glue on display in true hacker style. On the coding side of things, [Josh] used ChatGPT to produce the code from his prompting and Wokwi  to simulate it before deployment to the hardware.

China May Have A New Submarine Tracking Technology

Submarines have always been about stealth; that’s always been the whole point of putting them underwater. Tracking them can be difficult, even to this day, but China may have a new technique to help in this endeavour, as reported by the South China Morning Post.

Nuclear missile subs are nicknamed “boomers,” and can spend months underwater. Tracking them is of prime concern to many countries around the world. US Navy

The news comes from a study published in a Chinese journal, regarding detection of the most advanced American submarines. The stealthiest examples use all kinds of sophisticated systems to damp vibrations and reduce acoustic signatures to make detection as hard as possible. However, a new type of magnetic detector could change all that.

A research team used computer simulations to determine whether nuclear-powered submarines could be detected via the bubbles produced when cruising at high speed underwater. When these bubbles inevitably collapse, it can apparently produce a detectable signal that is orders of magnitude higher than the sensitivity of the best magnetic anomaly detectors. The signal is found on the order of 34.19 to 49.94 Hz, deep in the ELF range, according to researchers.

This could yet create another arms race, as submarine designers begin designing vessels to reduce bubble shedding at speed. Or, for all we know, this is already a well-known principle in the high-stakes world of submarine surveillance and combat. If you’re in the know, please don’t reveal any classified information in the comments section. It’s not worth your job or ours! If you recreate such a detector at home in a non-treasonous manner, though, don’t hesitate to let us know!