The Peak Of Vacuum Tube Radio Design

One of the more popular trends in the ham radio community right now is operating away from the shack. Parks on the Air (POTA) is an excellent way to take a mobile radio off-grid and operate in the beauty of nature, but for those who want to take their rig to more extreme locations there’s another operating award program called Summits on the Air (SOTA) that requires the radio operator to set up a station on a mountaintop instead. This often requires lightweight, low-power radios to keep weight down for the hike, and [Dan] aka [AI6XG] has created a radio from scratch to do just that.

[Dan] is also a vacuum tube and CW (continuous wave/Morse code) operator on top of his interest in summiting various mountains, so this build incorporates all of his interests. Most vacuum tubes take a lot of energy to operate, but he dug up a circuit from 1967 that uses a single tube which can operate from a 12 volt battery instead of needing mains power, thanks to some help from a more modern switch-mode power supply (SMPS). The SMPS took a bit of research, though, in order to find one that wouldn’t interfere with the radio’s operation. That plus a few other modern tweaks like a QCX interface and a switch to toggle between receive to transmit easily allows this radio to be quite versatile when operating while maintaining its portability and durability when summiting.

For those looking to replicate a tube-based radio like this one, [Dan] has made all of the schematics available on his GitHub page. The only other limitation to keep in mind with a build like this is that it tends to only work on a very narrow range of frequencies without adding further complexity to the design, in this case within the CW portion of the 40-meter band. But that’s not really a bad thing as most radios with these design principles tend to work this way. For some other examples, take a look at these antique QRP radios for operating using an absolute minimum of power.

Hackaday Prize 2023: Finger Tracking Via Muscle Sensors

Whether you want to build a computer interface device, or control a prosthetic hand, having some idea of a user’s finger movements can be useful. The OpenMuscle finger tracking sensor can offer the data you need, and it’s a device you can readily build in your own workshop.

The device consists of a wrist cuff that mounts twelve pressure sensors, arranged radially about the forearm. The pressure sensors are a custom design, using magnets, hall effect senors, and springs to detect the motion of the muscles in the vicinity of the wrist.

We first looked at this project last year, and since then, it’s advanced in leaps and bounds. The basic data from the pressure sensors now feeds into a trained machine learning model, which then predicts the user’s actual finger movements. The long-term goal is to create a device that can control prosthetic hands based on muscle contractions in the forearm. Ideally, this would be super-intuitive to use, requiring a minimum of practice and training for the end user.

It’s great to see machine learning combined with innovative mechanical design to serve a real need. We can’t wait to see where the OpenMuscle project goes next.

Continue reading “Hackaday Prize 2023: Finger Tracking Via Muscle Sensors”

What Is A Schumann Resonance And Why Am I Being Offered A 7.83Hz Oscillator?

Something that probably unites many Hackaday readers is an idle pursuit of browsing AliExpress for new pieces of tech. Perhaps it’s something akin to social media doomscrolling without the induced anger, and it’s certainly entertaining to see some of the weird and wonderful products that can be had for a few dollars and a couple of weeks wait. Every now and then something pops up that deserves a second look, and it’s one of those that has caught my attention today. Why am I being offered planar PCB coils with some electronics, described as “Schumann resonators”? What on earth is Schumann resonance, anyway? Continue reading “What Is A Schumann Resonance And Why Am I Being Offered A 7.83Hz Oscillator?”

Hackaday Podcast 218: Open Source AI, The Rescue Of Salyut 7, The Homework Machine

This week, Editor-in-Chief Elliot Williams and Kristina Panos have much in the way of Hackaday news — the Op Amp Challenge is about halfway over, and there are roughly three weeks left in the Assistive Tech challenge of the 2023 Hackaday Prize. Show us what you’ve got on the analog front, and then see what you can do to help people with disabilities to live better lives!

Kristina is still striking out on What’s That Sound, which this week honestly sounded much more horrendous and mechanical than the thing it actually is. Then it’s on to the hacks, beginning with the we-told-you-so that even Google believes that open source AI will out-compete both Google’s own AI and the questionably-named OpenAI.

From there we take a look at a light-up breadboard, listen to some magnetite music, and look inside a pair of smart sunglasses. Finally, we talk cars, beginning with the bleeding edge of driver-less. Then we go back in time to discuss in-vehicle record players of the late 1950s.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in  the comments!

Download and savor at your leisure.

Continue reading “Hackaday Podcast 218: Open Source AI, The Rescue Of Salyut 7, The Homework Machine”

Op-Amp Challenge: Interactive Analog LED Wave Array

A while back, [Chris Lu] was studying how analog circuits, specifically op-amps can be used to perform mathematical operations and wondered if they could be persuaded to solve differential equations, such as the wave equation. After sitting on the idea for a few years, it was time to make it a reality, and the result is an entry into the Op-Amp Challenge.

Unlike many similar interactive LED matrix displays that are digital in nature (because it’s a lot easier), this design is pure analog, using many, many op-amps. A custom PCB houses a 4×4 array of compute units, each with a blue and white LED indicating the sign and magnitude of the local signal.

The local input signal is provided by an IR photodiode, AC coupled to only respond to change, with every other circuit sharing a sensor to keep it simple. Each circuit is connected to its immediate neighbors on the PCB, and off the PCB via board-to-board connectors. This simple scheme makes this easily scalable if desired in the future.

[Chris] does a great job of breaking down the math involved, which makes this project a neat illustration of how op-amp circuits can implement complex mathematical problems in an easy-to-understand process. Even more op-amps are pressed into service for generating the split-rail voltage reference and for amplifying the weak photodiode signals, but the computation circuit is the star of the show.

We like analog computing a fair bit around these parts. Here’s a little something we were previously drooling over.

Continue reading “Op-Amp Challenge: Interactive Analog LED Wave Array”

This Week In Security: TPM And BootGuard, Drones, And Coverups

Full disk encryption is the go-to solution for hardening a laptop against the worst-case scenario of physical access. One way that encryption can be managed is through a Trusted Platform Module (TPM), a chip on the motherboard that manages the disk encryption key, and only hands it over for boot after the user has authenticated. We’ve seen some clever tricks deployed against these discrete TPMs, like sniffing the data going over the physical traces. So in theory, an integrated TPM might be more secure. Such a technique does exist, going by the name fTPM, or firmware TPM. It uses a Trusted Execution Environment, a TEE, to store and run the TPM code. And there’s another clever attack against that concept (PDF).

It’s chip glitching via a voltage fault. This particular attack works against AMD processors, and the voltage fault is triggered by injecting commands into the Serial Voltage Identification Interface 2.0 (SVI2). Dropping the voltage momentarily to the AMD Secure Processor (AMD-SP) can cause a key verification step to succeed even against an untrusted key, bypassing the need for an AMD Root Key (ARK) signed board firmware. That’s not a simple process, and pulling it off takes about $200 of gear, and about 3 hours. This exposes the CPU-unique seed, the board NVRAM, and all the protected TPM objects.

So how bad is this in the real world? If your disk encryption only relies on an fTPM, it’s pretty bad. The attack exposes that key and breaks encryption. For something like BitLocker that can also use a PIN, it’s a bit better, though to really offer more resistance, that needs to be a really long PIN: a 10 digit PIN falls to a GPU in just 4 minutes, in this scenario where it can be attacked offline. There is an obscure way to enable an “enhanced PIN”, a password, which makes that offline attack impractical with a secure password.

And if hardware glitching a computer seems to complicated, why not just use the leaked MSI keys? Now to be fair, this only seems to allow a bypass of Intel’s BootGuard, but it’s still a blow. MSI suffered a ransomware-style breach in March, but rather than encrypt data, the attackers simply threatened to release the copied data to the world. MSI apparently refused to pay up, and source code and signing keys are now floating in the dark corners of the Internet. There have been suggestions that this leak impacts the entire line of Intel processors, but it seems likely that MSI only had their own signing keys to lose. But that’s plenty bad, given the lack of a revocation system or automatic update procedure for MSI firmware. Continue reading “This Week In Security: TPM And BootGuard, Drones, And Coverups”

Tricorder Tutorial Isn’t Just For Starfleet Cadets

For many of us, the most difficult aspect of a project comes when it’s time to document the thing. Did you take enough pictures? Did you remember all the little details that it took to put it together? Should you explain those handful of oddball quirks, even though you’re probably the only person in the world that knows how to trigger them?

Well, we can’t speak to how difficult it was for [Mangy_Dog] to put together this training video for his incredible Star Trek: Voyager tricorder replica, but we certainly approve of the final product. Presented with a faux-VHS intro that makes it feel like something that would have been shown to cast members during the legendary run the franchise had in the 1990s, the video covers the use and operation of this phenomenal prop in exquisite detail.

Replaceable batteries are standard again in the 2370s.

Now to be fair, [Mangy_Dog] has sold a few of his replicas to other Trek aficionados, and we’re willing to bet they went for a pretty penny. As such, maybe it’s not a huge surprise he’d need to put together a comprehensive guide on how to operate the device’s varied functions. Had this been a personal project there wouldn’t have been the need to record such a detailed walk-through of how it all works — so in that regard, we’re fortunate.

One of the most interesting things demonstrated in this video is how well [Mangy_Dog] managed to implement mundane features such as brightness and volume control without compromising the look of the prop itself. Rather than adding some incongruous switches or sliders, holding down various touch-sensitive buttons on the device brings up hidden menus that let you adjust system parameters. The project was impressive enough from the existing images and videos, but seeing just how deep the attention to detail goes is really a treat.

Previously we took a look at some of the work that [Mangy_Dog] has put into these gorgeous props, which (unsurprisingly) have taken years to develop. While they might not be able to contact an orbiting starship or diagnose somebody’s illness from across the room, it’s probably fair to say these are the most realistic tricorders ever produced — officially or otherwise.

Continue reading “Tricorder Tutorial Isn’t Just For Starfleet Cadets”