Stalk Your Cats With A Browser-Controlled Robot

A good robot is always welcome around here at Hackaday, and Hackaday.io user [igorfonseca83]’browser-controlled ‘bot s is no exception. Felines beware.

[igorfonseca83] — building on another project he’s involved in — used simple materials for the robot itself, but you could use just about anything. His goal for this build was to maximize accessibility in terms of components and construction using common tools.

An Arduino Uno gets two D/C motors a-driving using an H-bridge circuit — granting independent control the wheels — an ESP8266 enabling WiFi access, with power provided by a simple 5V USB power bank. [igorfonseca83] is using an Android smartphone to transmit audio and video data; though this was mostly for convenience on his part, a Raspberry Pi and camera module combo as another great option!

Continue reading “Stalk Your Cats With A Browser-Controlled Robot”

Steampunk-Inspired Art Clock!

Getting paid to do what you enjoy is a special treat. A machinist and fabricator by trade — hobbyist hacker by design — [spdltd] was commissioned to build a mechanical art installation with a steampunk twist. Having complete creative control, he convinced his client to let him make something useful: a giant electro-mechanical clock.

Pieced together from copper, brass, steel, aluminium, and stainless steel, this outlandish design uses an Arduino Yun — a combination Linux and Arduino microcontroller board — to control the stepper motor and query the internet for the local time. Upon boot, the clock auto-calibrates by rotating the clock face until a sensor detects an extra peg and uses that to zero on twelve o’clock; the Yun then grabs the local time over the WiFi and sends the stepper motor a-spinning ’till the correct time is displayed.

At first glance, you may find it hard to get an accurate read of what time it is, but an accent piece’s pegs denote the quarter hour once it lines up with the notch above each hour. At least this one doesn’t require you to match colours or do much math to check the time.

Continue reading “Steampunk-Inspired Art Clock!”

Is It A Stupid Project If You Learn Something From The Process?

Fidget spinners — so hot right now!

[Ben Parnas], and co-conspirator in engineering inanity [Greg Daneault], brought to the recent Boston Stupid Hackathon in Cambridge, MA, their IoT-enabled Fidget Spinner…. spinner. A Spidget Finner. Yep, that’s correct: spin the smartphone, and the spinner follows suit. Stupid? Maybe, but for good reason.

Part satire on cloud tech, part learning experience, a curt eight hours of tinkering brought this grotesque, ESP32-based device to life. The ESP can the Arduino boot-loader, but you’ll want to use the ESP-IDF sdk, enabling broader use of the chip.

Creating an app that pulls data from the phone’s gyroscope, the duo set up the spinner-bot to access the WiFi and request packets of rotational data from the smartphone via a cloud-based server — the ‘spincloud.’ Both devices were enabled as clients to circumvent existing IoT services.

Continue reading “Is It A Stupid Project If You Learn Something From The Process?”

A Minority Report Arduino-Based Hand Controller

Movies love to show technology they can’t really build yet. Even in 2001: A Space Oddessy (released in 1968), for example, the computer screens were actually projected film.  The tablet they used to watch the news looks like something you could pick up at Best Buy this afternoon. [CircuitDigest] saw Iron Man and that inspired him to see if he could control his PC through gestures as they do on that film and so many others (including Minority Report). Although he calls it “virtual reality,” we think of VR as being visually immersed and this is really just the glove, but it is still cool.

The project uses an Arduino on the glove and Processing on the PC. The PC has a webcam which tracks the hand motion and the glove has two Hall effect sensors to simulate mouse clicks. Bluetooth links the glove and the PC. You can see a video of the thing in action, below.

Continue reading “A Minority Report Arduino-Based Hand Controller”

Biped Bob Walks And Dances

If you have a few servo motors, an Arduino, and a Bluetooth module, you could make Biped Bob as a weekend project. [B. Aswinth Raj] used a 3D printer, but he also points out that you could have the parts printed by a service or just cut them out of cardboard. They aren’t that complex.

Each of Bob’s legs has two servo motors: one for the hip and one for the ankle. Of course, the real work is in the software, and the post breaks it down piece-by-piece. In addition to the Arduino code, there’s an Android app written using Processing. You can build it yourself, or download the APK. The robot connects to the phone via BlueTooth and provides a simple user interface to do a few different walking gaits and dances. You can see a few videos of Biped Bob in action, below.

This wouldn’t be a bad starter project for a young person or anyone getting started with robotics, especially if you have a 3D printer. However, it is fairly limited since there are no sensors. Then again, that could be version two, if you were feeling adventurous.

We have mixed feelings about the BlueTooth control. BlueTooth modules are cheap and readily available, but so are ESP8266s. It probably would not be very difficult to put Bob on WiFi and let him serve his own control page to any web browser.

If Bob meets Jimmy, he may find himself envious. However, Jimmy would be a little more challenging to build. We’ve actually seen quite a few walking ‘bots over the years. Continue reading “Biped Bob Walks And Dances”

OpenSTF Dock Ready To Farm Clicks

Deep in the heart of a Chinese click farm — and probably used by the company your company hired to build an ‘app’ — is a magical device. Call it a Beowulf Cluster of Phones. Call it the farm. By any name, it’s a whole bunch of smartphones, smart watches, tablets, and other Smart Things all controlled remotely. This is OpenSTF, or a Smartphone Test Farm. You can build your own, but as with anything requiring a whole lot of cables and devices, if you don’t plan it well, it’s going to look like crap.

[Paul] needed an OpenSTF device lab, and found the perfect product to repurpose into a great looking enclosure. This device was the Griffin MultiDock 2, a charging station for smartphones and tablets ostensibly designed for classrooms. There really isn’t a lot going on inside this $500 phone charger, with a few modifications this enclosure can become an awesome phone farm.

This charging station is not meant to be used this way. On the outside, there are ten USB ports for ten different devices. Inside, there are three four-port USB hubs providing ten ports. ADB simply doesn’t work with this setup, so [Paul] had to completely replace the USB brains of this device. With new USB hubs, an Intel Compute Stick, and Sugru, [Paul] got OpenSTF up and running. While this would have been a fantastic waste of money had [Paul] bought this phone charging dock at full retail price, he didn’t. He apparently picked this up at a reasonable price, giving him a great looking phone farm that works just like he wanted.

Want Gesture-Tracking? All You Have To Do Is Lift Your Finger.

Watching Tony Stark wave his hands to manipulate projected constructs is an ever-approaching reality — at least in terms of gesture-tracking. Lift — a prototype built by a team from UC Irvine and FX Palo Alto Laboratory — is able to track up to ten fingers with 1.7 mm accuracy!

Lift’s gesture-tracking is achieved by using a DLP projector, two Arduino MKR1000s, and a light sensor for each digit. Lift’s design allows it to work on virtually any flat surface; the projected image acts as a grid and work area for the user. As their fingers move across the projected surface, the light sensors feed the information from the image to the Arduinos, which infers the location of each finger and translate it into a digital workspace. Sensors may also be mounted on other objects to add functionality.

So far, the team has used Lift as an input device for drawing, as well as using it to feign gesture controls on a standard laptop screen. The next step would be two or more projectors which would allow Lift to function fully and efficiently in three dimensions and directly interacting with projected media content. Can it also operate wirelessly? Yes. Yes, it can.

While we don’t have Tony Stark’s hologram workstation quite yet, we can still play Tetris, fly drones, and mess around with surgical robots.