Ask Hackaday: Does Your Car Need An Internet Killswitch?

Back in the good old days of carburetors and distributors, the game was all about busting door locks and hotwiring the ignition to boost a car. Technology rose up to combat this, you may remember the immobilizer systems that added a chip to the ignition key without which the vehicle could not be started. But alongside antitheft security advances, modern vehicles gained an array of electronic controls covering everything from the entertainment system to steering and brakes. Combine this with Bluetooth, WiFi, and cellular connectivity — it’s unlikely you can purchase a vehicle today without at least one of these built in — and the attack surface has grown far beyond the physical bounds of bumpers and crumple zones surrounding the driver.

Cyberattackers can now compromise vehicles from the comfort of their own homes. This can range from the mundane, like reading location data from the navigation system to more nefarious exploits capable of putting motorists at risk. It raises the question — what can be done to protect these vehicles from unscrupulous types? How can we give the user ultimate control over who has access to the data network that snakes throughout their vehicle? One possible solution I’m looking at today is the addition of internet killswitches.

Continue reading “Ask Hackaday: Does Your Car Need An Internet Killswitch?”

When Your Car Breaks Down, Simply Hack It Into A Simulator

When [Nishanth]’s Subaru BRZ came to a sudden halt, he was saddened by the wait to get a new engine installed. Fortunately, he was able to cheer himself up by hacking it into a car simulator in the mean time. This would have the added benefit of not being limited to just driving on the Road Atlanta where the unfortunate mishap occurred, but any course available on Forza and similar racing games.

On paper it seemed fairly straight-forward: simply tap into the car’s CAN bus for the steering, throttle, braking and further signals, convert it into something a game console or PC can work with and you’re off to the races. Here the PC setup is definitely the cheapest and easiest, with a single part required: a Macchina M2 Under the Dash kit ($97.50). The XBox required over $200 worth of parts, including the aforementioned Macchina part, an XBox Adaptive Controller and a few other bits and pieces. And a car, naturally.

https://www.notion.so/image/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fd49697c6-29ae-4b4d-a27b-e2da019d32de%2FUntitled.png?table=block&id=ed4e1bf2-91c6-4494-8e0f-f10964620869&width=5120&cache=v2

The Macchina M2 is the part that listens to the CAN traffic via the OBD2 port, converting it into something that resembles a USB HID gamepad. So that’s all a matter of plug’n’play, right? Not so fast. Every car uses their own CAN-based system, with different peripherals and addresses for them. This means that with the Macchina M2 acquired, [Nishanth]’s first task was to reverse-engineer the CAN signals for the car’s controls.

At this point the story is pretty much finished for the PC side of things, but the XBox One console is engineered to only accept official peripherals. The one loop-hole here is the Adaptive Controller, designed for people with disabilities, which allows the use of alternative inputs. This also enables using a car as an XBox One controller, which is an interesting side-effect.

Continue reading “When Your Car Breaks Down, Simply Hack It Into A Simulator”

The Future Of Diesel Is On Shaky Ground

Diesel is a fuel that has had a mixed history, with varying levels of take-up by consumers around the world. In the world of transport, diesel engines have offered better fuel economy and torque than comparable gasoline engines. Particularly popular in Europe, diesel established a strong consumer base in both small commuter cars as well as heavy vehicles such as trucks and buses.

Despite this, the tide is turning, and for the average motorist, diesel’s days may be numbered. Why is this the case, and what are the potential alternatives vying for diesel’s crown?

Plenty of Pros, but Plenty of Cons

Diesel remains a fuel with a varied uptake around the world. It has enjoyed great popularity in Europe in small commuter cars.

Diesel is a hydrocarbon fuel with several advantages over gasoline. Its lack of volatility makes it workable to use in a compression-ignition mode, and diesel engines can be run with lean fuel-air ratios. It also has a higher volumetric energy density than gasoline, and thanks to low volatility, diesel engines can run at significantly higher compression ratios without risking detonation. These benefits allow diesel engines to produce significantly more torque than similarly sized gasoline engines, and they can offer fuel economy gains in excess of 15%.

Unfortunately, diesel also comes with its fair share of drawbacks. Diesel engines are typically poor when it comes to power to weight ratio, as their high compression ratio and torque output demands heavier materials in their construction. The major bugbear of the diesel engine, however, is its emissions. Despite greater fuel efficiency, carbon dioxide output from a diesel engine is often far worse than that of a comparable gas motor. Additionally, their lean-burning nature leads to production of high levels of oxides of nitrogen (NOx), which have major negative environmental effects. There’s also the problem of particulate pollution, which is responsible for respiratory harm in humans. Diesel automobiles rank significantly worse than gasoline vehicles in all these areas. It’s begun to cause figurative headaches for the industry, and literal headaches for the public. Continue reading “The Future Of Diesel Is On Shaky Ground”

Are Hydrogen Cars Still Happening?

Potentially coming to a service station near you.

In every comment section, there’s always one. No matter the electric vehicle, no matter how far the technology has come, there’s always one.

“Only 500 miles of range? Electric cars are useless! Me, and everyone I know, drives 502 miles every day at a minimum! Having to spend more than 3 minutes to recharge is completely offensive to my entire way of life. Simply not practical, and never will be.”

Yes, it’s true, electric cars do have limited range and can take a little longer to recharge than a petrol or diesel powered vehicle. Improvements continue at a rapid pace, but it’s not enough for some.

To these diehards, hydrogen fuel cell vehicles may have some attractive benefits. By passing hydrogen gas through a proton-exchange membrane, electricity can be generated cleanly with only water as a byproduct. The technology holds a lot of promise for powering vehicles, but thus far hasn’t quite entered our daily lives yet. So what is the deal with hydrogen as a transport fuel, and when can we expect to see them in numbers on the ground?

Continue reading “Are Hydrogen Cars Still Happening?”

What Happens To Tesla When The Sleeping Auto Giants Awake?

The history of automotive production is littered with the fallen badges of car companies that shone brightly but fell by the wayside in the face of competition from the industry’s giants. Whether you pine for an AMC, a Studebaker, or a Saab, it’s a Ford or a Honda you’ll be driving in 2019.

In the world of electric cars it has been a slightly different story. Though the big names have dipped a toe in the water they have been usurped by a genuinely disruptive contender. If you drive an electric car in 2019 it won’t be that Ford or Honda, it could be a Nissan, but by far the dominant name in EV right now is Tesla.

Motor vehicles are standing at the brink of a generational shift from internal combustion to electric drive. Will Tesla become the giant it hopes, or will history repeat itself?

Continue reading “What Happens To Tesla When The Sleeping Auto Giants Awake?”

Putting Carbs On A Miata, Because It’s Awesome

Carburettors versus electronic fuel injection (EFI); automotive fans above a certain age will be well versed in the differences. While early EFI systems had their failings, the technology brought with it a new standard of reliability and control. By the early 1990s, the vast majority of vehicles were sold with EFI, and carburettors became a thing of the past.

The Mazda Miata was no exception. Shipping in 1989, it featured not only multiport fuel injection, but also a distributorless ignition system. Consisting of two coilpacks in a wasted spark configuration, with computer-controlled timing, the system was quite advanced for its time, especially for a budget sports car.

Despite the Miata’s technological credentials, those in the modified car scene tend to go their own way. A man by the name of Evan happened to be one such individual and decided to do just this — scrapping the EFI system and going with a retro carburetor setup. It was around this point that this I got involved, and mechanical tinkering ensued.

Continue reading “Putting Carbs On A Miata, Because It’s Awesome”

A Post-Mortem For An Electric Car Charger

[Mastro Gippo] recently purchased a wall mounted charger for his electric car that looked great and had all the bells and whistles he wanted. There was only one problem: the thing burned up on him. Looking to find out how this seemingly high-end piece of hardware gave up the ghost so easily, he took it apart and tried to figure out where things went wrong. While he’s not looking to sling any mud and actually name the company who produced the charger, he certainly has some choice words for whoever green-lit this particular design.

With the charger open, there’s little doubt that something became very toasty inside. A large swath of the PCB has a black char mark on it, and in some places it looks like the board burned right through. After a close examination, [Mastro] is of the opinion that the board heated up to the point that the solder actually liquified on some connections. This conductive flow then shorted out components below it, and things went from bad to worse.

But where did all the heat come from? [Mastro] was stunned to see that a number of the components inside the charger were only rated for 30 amps, despite the label for the product clearly stating it’s good for up to 32A. With components pushed past their limits, something had to give. He wonders how such a device could have made it through the certification process; an excellent question we’d love to know the answer to.

The worst part is, it looks like the designers might have even known there was an overheating issue. [Mastro] notes that there are heatsinks bolted not to a component as you might assume, but directly to the PCB itself. We’ve seen what happens when designers take a cavalier attitude towards overheating components, and the fact that something like an electric vehicle charger was designed so poorly is quite concerning.