The Woeful World Of Worldwide E-Waste

How large is the cache of discarded electronics in your home? They were once expensive and cherished items, but now they’re a question-mark for responsible disposal. I’m going to dig into this problem — which goes far beyond your collection of dead smartphones — as well as the issues of where this stuff ends up versus where it should end up. I’m even going to demystify the WEEE mark (that crossed out trashcan icon you’ve been noticing on your gadgets), talk about how much jumbo jets weigh, and touch on circular economies, in the pursuit of better understanding of the waste streams modern gadgets generate.

Our lives are encountering an increasing number of “how do I dispose of this [X]” moments, where X is piles of old batteries, LCDs, desktop towers, etc. This leads to relationship-testing piles of garbage potential in a garage or the bottom of a closet. Sometimes that old gear gets sold or donated. Sometimes there’s a handy e-waste campaign that swings through the neighborhood to scoop that pile up, and sometimes it eventually ends up in the trash wrapped in that dirty feeling that we did something wrong. We’ve all been there; it’s easy to discover that responsible disposal of our old electronics can be hard.

Fun fact: the average person who lives in the US generates 20 kg of e-waste annually (or about 44 freedom pounds). That’s not unique, in the UK it’s about 23 kg (that’s 23 in common kilograms), 24 kg for Denmark, and on and on. That’s quite a lot for an individual human, right? What makes up that much waste for one person? For that matter, what sorts of waste is tracked in the bogus sounding e-waste statistics you see bleated out in pleading Facebook posts? Unsurprisingly there are some common definitions. And the Very Serious People people at the World Economic Forum who bring you the definitions have some solutions to consider too.

We spend a lot of time figuring out how to build this stuff. Are we spending enough time planning for what to do with the gear once it falls out of favor? Let’s get to the bottom of this rubbish.
Continue reading “The Woeful World Of Worldwide E-Waste”

Bell Labs, Skunk Works, And The Crowd Sourcing Of Innovation

I’ve noticed that we hear a lot less from corporate research labs than we used to. They still exist, though. Sure, Bell Labs is owned by Nokia and there is still some hot research at IBM even though they quit publication of the fabled IBM Technical Disclosure Bulletin in 1998. But today innovation is more likely to come from a small company attracting venture capital than from an established company investing in research. Why is that? And should it be that way?

The Way We Were

There was a time when every big company had a significant research and development arm. Perhaps the most famous of these was Bell Labs. Although some inventions are inevitably disputed, Bell Labs can claim radio astronomy, the transistor, the laser, Unix, C, and C++ among other innovations. They also scored a total of nine Nobel prizes.

Bell Labs had one big advantage: for many years it was part of a highly profitable monopoly, so perhaps the drive to make money right away was less than at other labs. Also, I think, times were different and businesses often had the ability to look past the next quarter.

Continue reading “Bell Labs, Skunk Works, And The Crowd Sourcing Of Innovation”

Predicting Weather With The Internet Of Cars

Follow this train of thought: cars have sensors, cars are in frequent use over large areas, cars are the ultimate distributed sensor network for weather conditions.

Many years ago, as I wasted yet another chunk of my life sitting in the linear parking lot that was my morning commute, I mused that there had to be a way to prevent this madness. I thought: What if there was a way for the cars to tell each other where slowdowns are? This was long before smartphones, so it would have to be done the hard way. I imagined that each vehicle could have a small GPS receiver and a wireless transceiver of some sort, to send the vehicle’s current position to a central server, which would then send the aggregate speed data for each road back to the subscriber’s car. A small display would show you the hotspots and allow you to choose an alternate route. Genius! I had finally found my billion dollar idea.

Sadly, it was not to be. Seemingly days later, everyone on the planet had a GPS-equipped smartphone in his or her pocket, and the complex system I imagined was now easily implemented as software. Comically, one of the reasons I chose not to pursue my idea is that I didn’t think anyone would willingly let a company have access to their location information. Little did I know.

So it was with great interest that I read an article claiming that windshield wiper data from connected cars can be used to prevent floods. I honestly thought it was a joke at first, like something from a Monty Python sketch. But as I read through the article, I thought about that long-ago idea I had had, which amounted to a distributed sensor platform, might actually be useful for more than just detecting traffic jams.

Continue reading “Predicting Weather With The Internet Of Cars”

Airbus To Halt Production Of The A380; Goodbye To An Engineering Triumph

Eleven years ago, the Airbus A380 entered commercial service with Singapore Airlines. In the time since then it has become the queen of the skies. It’s a double-decker airliner, capable of flying 550 passengers eight thousand nautical miles. Some configurations of the A380 included private suites. Some had a shower. This is the epitome of luxury, a dream of flying with long-stemmed glasses, a movie, and a pleasant dream in mid-air.

Now, after the cancellation of A380 orders by Emirates, Airbus has announced it will end production of this massive, massive plane. No, it’s not the last flight of the Concorde, but it is the beginning of the end of an era. The biggest and most impressive planes just aren’t economical; it’s possible to fly three 787s across the globe for a single flight of an A380. The skies won’t fall silent, but soon the A380 will be no more.

Continue reading “Airbus To Halt Production Of The A380; Goodbye To An Engineering Triumph”

In Space, No One Can Hear You Explode: The Byford Dolphin Incident

“It wouldn’t happen that way in real life.” One of the most annoying habits of people really into the “sci” of sci-fi is nitpicking scientific inaccuracies in movies. The truth is, some things just make movies better, even if they are wrong.

What would Star Wars be without the sounds of an epic battle in space where there should be no sound? But there are plenty of other examples where things are wrong and it would have been just as easy to get them right — the direction of space debris in the movie Gravity, for example. But what about the age-old trope of explosive decompression? Some movies show gross body parts flying everywhere. Others show distressed space travelers surviving in space for at least brief periods.

It turns out, dropping pressure from one atmosphere to near zero is not really good for you as you might expect. But it isn’t enough to just make you pop like some meat balloon. You are much more likely to die from a pulmonary embolism or simple suffocation. But you are a meat balloon if you experience a much greater change in pressure. How do we know? It isn’t theoretical. These things have happened in real life.

Continue reading “In Space, No One Can Hear You Explode: The Byford Dolphin Incident”

Supercon 2018: Mike Szczys And The State Of The Hackaday

Every year at Superconference, Editor-in-Chief Mike Szczys gets the chance to talk about what we think are the biggest, most important themes in the Hackaday universe. This year’s talk was about science and technology, and more importantly who gets to be involved in building the future. Spoiler: all of us! Hackaday has always stood for the ideal that you, yes you, should be taking stuff apart, improving it, and finding innovative ways to use, make, and improve. To steal one of Mike’s lines: “Hackaday is an engine of engagement in engineering fields.”

Continue reading “Supercon 2018: Mike Szczys And The State Of The Hackaday”

Hack My House: Garage Door Cryptography Meets Raspberry Pi

Today’s story is one of victory and defeat, of mystery and adventure… It’s time to automate the garage door. Connecting the garage door to the internet was a must on my list of smart home features. Our opener has internet connection capabilities built-in. As you might guess, I’m very skeptical of connecting a device to the internet when I have no control over the software running on it.

The garage door is controlled by a button hung on the garage wall. There is only a pair of wires, so a simple relay should be all that is needed to simulate the button press from a Raspberry Pi. I wired a relay module to a GPIO on the Pi mounted in the garage ceiling, and wrote a quick and dirty test program in Python. Sure enough, the little relay was clicking happily– but the garage door wasn’t budging. Time to troubleshoot. Does the push button still work? *raises the garage door* yep. How about the relay now? *click…click* nope.

You may have figured out by now, but this garage door opener isn’t just a simple momentary contact push button. Yes, that’s a microcontroller, in a garage door button. This sort of scenario calls for forensic equipment more capable than a simple multimeter, and so I turned to Amazon for a USB oscilloscope that could do some limited signal analysis. A device with Linux support was a must, and Pico Technology fit the bill nicely.

Searching for a Secret We Don’t Actually Need

My 2 channel Picotech oscilloscope, the 2204A, finally arrived, and it was time to see what sort of alien technology was in this garage door opener. There are two leads to the button, a ground and a five volt line. When the button is pressed, the microcontroller sends data back over that line by pulling the 5 V line to ground. If this isn’t an implementation of Dallas 1-wire, it’s a very similar concept.

Continue reading “Hack My House: Garage Door Cryptography Meets Raspberry Pi”