Classic Amp Revived With A Pi

Guitar amplifiers have a hard life, and as anyone who’s run a venue can tell you, they often have significant electrical issues after a life on the road. [Dsagman] had a Vox amplifier with fried internals, and rather than repair the original he rebuilt it with a Raspberry Pi inside to provide a fully-loaded array of effects.

Though the subject is the Vox, it’s best to see this as more a tale of how to create a guitar effect array in a Pi than specifically put it in an amplifier. The Pi has an audio board and an MCP3008 ADC added to it, and using those two it takes its inputs from a series of potentiometers and process the audio passing through the audio board. In addition there are a series of LED indicators and an LED bar graph to keep the user in touch with what’s going on.

The whole lot is nicely integrated in the VOX case with all the potentiometers on an aluminium panel. He discusses amplifier choice, but as you might expect the final choice is a Class D module. All in all an amp many readers would probably go for.

As long-time readers will remember, guitar effects have made quite a few appearances around here. Continue reading “Classic Amp Revived With A Pi”

Singing Fish Nails Sea Shanty Audition

The Big Mouth Billy Bass and other singing fish were a scourge first delivered to us in the late 90s. [Kevin Heckart] has been teaching them to sing new songs without the tinny sound quality and hokey folk tunes. For this, he must be applauded.

A Teensy 4.1 or Teensy 3.2 is used to power [Kevin]’s various singing fish builds. There are two motors inside a singing fish, typically — one motor to pivot the fish’s body, and one to open and close the mouth. Hook these up to a motor driver, and command that with the Teensy, and you’re up and running. To sync the fish with the music, MIDI data is sent to the Teensy over USB. The Teensy takes in note data and uses this to command the motors to make the fish appear to sing along.

The tutorial linked above is a great way to learn how the hack was achieved. However, the real money is in the performance. A video of [Kevin]’s fishy chorus performing the famous Wellerman sea shanty has over 50 million views on YouTube and he’s collected over 26 million likes on Tiktok.

Sometimes the simple hacks are the ones that bring the most joy. Video after the break.

Continue reading “Singing Fish Nails Sea Shanty Audition”

Arduino Drum Platform Is Fast

Drums are an exciting instrument to learn to play, but often prohibitive if there are housemates or close neighbors involved. For that problem there are still electronic drums which can be played much more quietly, but then the problem becomes one of price. To solve at least part of that one, [Jeremy] turned to using an Arduino to build a drum module on his own, but he still had to solve yet a third problem: how to make the Arduino fast enough for the drums to sound natural.

Playing music in real life requires precise timing, so the choice of C++ as a language poses some problems as it’s not typically as fast as lower-level languages. It is much easier to work with though, and [Jeremy] explains this in great detail over a series of blog posts detailing his drum kit’s design. Some of the solutions to the software timing are made up for with the hardware on the specific Arduino he chose to use, including an even system, a speedy EEPROM, hardware timers, and an ADC that can sample at 150k samples per second.

With that being said, the hardware isn’t the only thing standing out on this build. [Jeremy] has released the source code on his GitHub page for those curious about the build, and is planning on releasing several more blog posts about the drum kit build in the near future as well. This isn’t the only path to electronic drums, though, as we’ve seen with this build which converts an analog drumset into a digital one.

Continue reading “Arduino Drum Platform Is Fast”

Doodlestation Is Beautifully Musical Furniture

Whether you’re a modular synth enthusiast or simply love the idea of rad electronic jams, we can all get behind the idea of crazy electronic instruments with buttons, dials, and patch cables galore. The Doodlestation is a wonderful example of that, built by [Love Hulten].

There’s a custom 37-key keyboard that lets one input musical notes in the typical way, along with a hilarious animated MIDI visualizer with a man that uses his mouth to shoot rainbows. There’s a theremin built into the chassis, too, allowing your hands to control the sound via the magic of the æther. Even better, there’s a custom-built tape echo in the upright section, and you even get to see the mechanical parts working and the mag ribbon wiggling about. That’s fun.

The custom hardware is joined by a series of off-the-shelf devices that add their own functionality to the mix. It includes a Sequential OB-6 analog synthesizer, a Moog DFAM drum module, and a Hologram Microcosm loop & glitch box for more noodling possibilities.

We love a good musical project around these parts; we’ve featured some great other projects for live electronic jams before, too. Video after the break.

Continue reading “Doodlestation Is Beautifully Musical Furniture”

72 DIY Musical Instruments Played In 7 Minutes

Humans have been making musical instruments from whatever items are close at hand for thousands of years, and we aren’t showing any signs of slowing down yet, least of all artist [Nicolas Bras] and collaborator [Sandrine Morais.] They have been designing and constructing quite a number of DIY instruments over the years, with this demo video highlighting a whopping 72 of them in the space of just seven minutes!

Clearly, [Nicolas] is one of those people who can play literally anything, and shows his skills off very well indeed if you ask us. Particularly fine sounding is the pilchards tin guitar found at 2:52 in the video, and the electric pipe beat box at 2:10 is also pretty fun.

Pretty much all the usual methods for producing sounds mechanically are covered, namely air resonating within a shaped enclosure (flutes, and such), string vibrations which might be sensed electrically (guitars, zithers, etc) and percussive instruments which vibrate an enclosed air mass (like the udu) or vibrate other things (like plates or bars). Looking over the YouTube channel, we can’t think of much they haven’t tried to make music with!

If all this sounds familiar, well, we covered [Nicolas] that time he was traveling for a gig and his instrument collection got lost in transit.

Continue reading “72 DIY Musical Instruments Played In 7 Minutes”

Abacus Synthesizer Really Adds Up

The abacus has been around since antiquity, and takes similar forms over the hundreds of cultures that have embraced it. It may be one of the first devices to be considered as having a “user interface” in the modern context — at least for simple arithmetic calculations. But using an abacus as the UI for a music synthesizer seems like something entirely new.

Part art concept project and part musical instrument, the “Abacusynth” by [Elias Jarzombek] is a way to bring a more visual and tactile experience to controlling a synth, as opposed to the usual knobs and switches. The control portion of the synth consists of four horizontal rods spanning two plywood uprights. Each rod corresponds to a voice of the polyphonic synth, and holds a lozenge-shaped spinner mounted on a low-friction bearing. Each spinner can be moved left and right on its rod, which controls the presence of that voice; spinning the slotted knob controls the modulation of the channel via photosensors in the uprights. Each rod has a knob on one side that activates an encoder to control each voice’s waveform and its harmonics.

In use, the synthesizer is a nice blend of electronic music and kinetic sculpture. The knobs seem to spin forever, so Abacusynth combines a little of the fidget spinner experience with the exploration of new sounds from the built-in speaker. The synth also has a MIDI interface, so it works and plays well with other instruments. The video below shows the hardware version of Abacusynth in action; there’s also a web-based emulation to try before you build.

Continue reading “Abacus Synthesizer Really Adds Up”

Behold The Mighty Floppotron 3.0

If anyone has been struggling to get hold of a 3.5″ floppy drive lately, we think we’ve got a clue as to why — behold, the mighty floppotron 3.0 by [Paweł Zadrożniak.] With an utterly bonkers 512 floppy drives, four flatbed scanners and sixteen hard disks of various sizes, the floppotron 3.0 MIDI synthesiser is possibly the biggest such retro hardware synthesiser so far. Since every part of the system is motor-based, nobody is going to be surprised that to power the show is quite an undertaking, with nearly twenty switched-mode PSU modules needed to keep up with the demand, averaging 300W but rated at 1.2kW peak!

A full custom MIDI-to-RS485 gateway based around the nRF52xx series MCU deals with the communication to the collection of instrument controllers. These controllers are generic enough to take RS485 input and control a dedicated driver for either an array of floppy drives (up to 192), an array of hard drives or the handful of scanners. The way the floppy drives are grouped is quite neat. Rather than using each drive to generate a specific tone, the software uses the whole column for each note. By varying the number of drives moving simultaneously over time, the sound volume varies, simulating the note envelope and giving a richer sound. Multiple columns driving in parallel give the system a 16-note polyphony. The floppies cover the low notes, with the four flatbed scanners covering the higher notes. MIDI drum sounds are mapped to the hard disks, operating in a, well, percussive manner, with different case shapes giving unique sounds. Even the firmware can be updated over MIDI! So, checkout the demo video after the break for a sweet rendition of the very familiar “Entry of the gladiators” by Czech composer Julius Fučík.

If you think this looks familiar, you’re not mistaken, we’ve covered an earlier floppotron before, but we reckon nobody has attempted to do it with ye olde eight-inch drives yet!

Continue reading “Behold The Mighty Floppotron 3.0”