It’s Difficult To Read An Audiophile Guide As An Analogue Engineer

Sitting on a train leaving the Hackaday Berlin conference, and Hacker News pops up Julian Shapiro with a guide to HiFi. What Hackaday scribe wouldn’t give it a click, to while away the endless kilometres of North European Plain!

It’s very easy as an analogue electronic engineer, to become frustrated while reading audiophile tracts, after all they have a tendency to blur superficial engineering talk with pseudoscience. There’s a rich vein of parody to be found in them, but nevertheless it’s interesting to read them because just sometimes the writer gets it and doesn’t descend into the world of make-believe. Continue reading “It’s Difficult To Read An Audiophile Guide As An Analogue Engineer”

A Feature-Rich Amplifier Module For 3-Way Speaker Builds

There’s something rewarding about building your own DIY audio hardware. Knowing you put it together yourself gives you faith in the construction, and psychosomatically makes the music sound all that much sweeter. If you’re into that kind of thing, you might like to give [Eric Sorensen’s] Denmark amplifier module a look.

The amplifier is intended to be used in a 3-way system, running a subwoofer, woofer, and tweeter. It uses a 1000 W ICEpower module to run the subwoofer, with a pair of 500W ICEpower modules to run the woofer and tweeter respectively. Meanwhile, a MiniDSP 2x4HD is used to accept optical audio input. It also offers digital signal processing and serves as a crossover to split the signal across the three speakers. An STM32F401 is used to run the show, controlling all the various modules and the necessary status LEDs. It’s a feature-rich build, too, with overtemperature monitoring, fan control, and clipping warnings built in.

The whole setup is built on to a sturdy aluminium backplate. The CNC-machined panel has simple tactile buttons for control. There’s also a nifty use of clear PETG 3D printer filament as a light pipe for LEDs. It’s effective, and it looks great. The whole module is designed to slide into the bottom of a 3-way speaker housing like a drawer.

Overall, if you’re building a big set of 3-way speakers, you might find the Denmark amplifier module is perfect for your needs. Alternatively, you could experiment with a different kind of speaker entirely. Video after the break.

Continue reading “A Feature-Rich Amplifier Module For 3-Way Speaker Builds”

A Tape Loop Echo You Can Build

Echo and reverb are now electronic audio effects done in a computer or an integrated circuit, but originally they were achieved through mechanical means. Reverb units used springs, and echo units used loops of magnetic tape. As a musician hankering after a mechanical tape echo unit, [Adam Paul] was left with no choice but to build his own. We featured an early prototype, but now he’s back with a finished version that’s intended to be replicated by other musicians.

The unit takes a cassette mechanism from one of the last still-manufactured players available through the usual sources. It splits record and play heads, with the normal cassette replaced with a tape loop made from extra-thick computer tape. A custom PCB replaces most of the electronics, and the auto-reverse system is disabled.

The result is a functional tape echo system, as can be seen in the video below the break. This is ready to build yourself, with everything on a GitHub repository and an extremely comprehensive build guide, so do any of you fancy a go?

Read about the device’s earlier incarnation here.

Continue reading “A Tape Loop Echo You Can Build”

How To Make A Larger Air-Cored Inductor

Radio amateurs often have a love-hate relationship with home-made inductors, sharing all kinds of tips and tricks as to how the most stable nanohenry inductor can be wound. But there’s another group in the world of electronics with an interest in high-quality inductors, namely the audio enthusiasts. They need good quality inductors with a values in the millihenries, to use in loudspeaker crossover networks. [Homemade Audio] takes us through their manufacturing process for these coils, and the result is a watchable video resulting in some very well-made components.

The adjustable former is a machined aluminium affair of which we’re treated to the full manufacture. It’s likely the same results could be achieved with a 3D printed reel. The free-as-in-beer Coil64 on Windows is used to calculate the dimensions and number of turns, and it’s set up on a jig with a cordless screwdriver doing the winding. The best technique for flat layers of turns is explained, and a coat of varnish is put on each completed layer. We’re guessing this is to stop the coil “singing” at audio frequencies.

With a set of cable ties holding it together the result is a very tidy component. It’s adjusted a few turns to get the right value with an LCR meter, however experience tells us that a tiny percentage either way won’t harm the resulting network too much. If you make your own speakers, the video below the break could be extremely useful.

Need a loudspeaker primer? We have just the article for you.

Continue reading “How To Make A Larger Air-Cored Inductor”

Ploopy Builds Open Source RP2040-Powered Headphones And You Can Too!

We’ve seen many DIY headphones projects on these fair pages over the years, but not many that are quite as DIY as the Ploopy Headphones. What makes this project interesting is the sheer depth of the construction, with every single part being made from what we might call base materials. Materials such as 3D printer filament, foam and felt, and the usual metallic vitamins.

The electronics are fairly straightforward, with an RP2040 functioning as the USB audio interface and equalizer function. Audio samples are emitted as I2S into a PCM3050 24-bit stereo codec which generates a pair of differential output audio signals. These are then converted from differential to single-ended signals and passed on to the coil drivers. The coil drivers consist of no fewer than eight-paralleled opamps per channel. All of this is powered by the USB-C connection to the host computer. Whilst a kit of parts is available for this, you can make your own if you wish, as the full source (Altium designer needed for tweaks) is available on the Ploopy headphone GitHub.

A pretty ploopy response

Many DIY headphone builds would likely be using off-the-shelf speaker units, with large parts of the ear cups being taken from spare parts kits for commercial offerings. But not the Ploopy. The drivers are constructed from flex PCB coils with a standard TRRS jack on each side. Magnets for these coils to react against are held in a 3D-printed frame that is attached to the outer cover. The coils are aligned with a special jig and bonded to the ‘driver foam’ with some 3M VHB tape.

The ear cups are constructed with some 3D printed rings, foam pieces, and simple woven material. The resonator plates push into the inner side of the cup, and the assembly simply screws to the driver assembly. The incredibly detailed assembly wiki makes it look easy, but we reckon there are a few tricky steps in there to trip the unwary. The headband again consists of printed spring sections, some woven material, and foam with a few metallic vitamins thrown in. That makes it sounds simple, but it isn’t.

On the whole the build looks fantastic, but what does it sound like? The Ploopy team has tested them against a pair of Sennheiser HDRXX giving a broadly comparable response, but we’re no audio experts, and the proof, as always, is in the wearing. This project seems to be the ultimate in audio tweakability, with the punchy RP2040 capable of running six audio filters at the full 48 KHz, 16-bit audio, though, the PCM3050 is capable of more.

Want to build some headphones, but need a Bluetooth interface? We got you covered. Can 3D printed headphones ever compare to the big names? We’ll see.

An Open Hardware Eurorack Compatible Audio FPGA Front End

[Sebastian Holzapfel] has designed an audio frontend (eurorack-pmod) for FPGA-based audio applications, which is designed to fit into a standard Eurorack enclosure. The project, released under CERN Open-Hardware License V2, is designed in KiCAD using the AK4619VN four-channel audio codec by Asahi Kasei microdevices. (And guess what folks, there’s plenty of those in stock!) Continue reading “An Open Hardware Eurorack Compatible Audio FPGA Front End”

A closeup of a black flexible PCB with an out-of-focus quarter in the background, approximately the same size as the end of the PCB we're looking at. One the right is a USB C connector and to its left are two SMD components with visible pins. Several smaller SMD components (resistors or caps?) are soldered to other parts of the board.

Making The AirPods Pro Case Repairable

Apple is often lauded for its design chops, but function is often sacrificed at the altar of form, particularly when repair is involved. [Ken Pillonel] has made it easier for everyone to replace the batteries or lightning port in the AirPods Pro case. (YouTube)

With such notable hacks as adding USB C to the iPhone already under his belt, [Pillonel] has turned his attention to fixing the notoriously poor repairability of AirPods and AirPods Pro, starting with the cases. While the batteries for these devices are available, replacement Lightning ports are not, and taking the housing apart for the case is an exercise in patience where the results can’t be guaranteed.

He designed a USB C replacement port for broken Lightning ports that is a perfect fit if you happen to get the case apart in one piece. If you’re less successful, he has you covered there too with a 3D printable enclosure replacement.

We sure miss the days of schematic proliferation here at Hackaday, but we know you don’t let glued enclosures or unobtainium parts stand in the way of repairs.

Continue reading “Making The AirPods Pro Case Repairable”