A Face Mask That’s Functional And Hacker-Certified

[splat238] needed a mask for going out in public, but wanted something that fit his personal style a bit better than the cloth masks everyone else was wearing. So, he upcycled his old airsoft mesh mask using an impressive 104 NeoPixels to create his NeoPixel LED Face Mask.

The NeoPixels are based on the popular WS2812b LEDs. These are individually addressable RGB LEDs with a pretty impressive glow. [splat238] purchased a 144 NeoPixel strip to avoid having to solder each of those 104 NeoPixels one-by-one. He cut the 144-LED strip into smaller segments to help fit the LEDs around the mask. He then soldered the power and data lines together so that he could still control the LEDs as if they were one strip and not the several segments he cut them into. He needed a pretty bulky battery pack to power the whole thing. You can imagine how much power 104 RGB LEDs would need to run. We recommend adding a battery protection circuit next time as these LEDs probably draw a hefty amount of current.

He designed his own controller board featuring an ESP8266 microcontroller. Given its sizable internal memory, the ESP8266 makes it easy to store a variety of LED patterns without worrying about running out of programming space. He’s also hoping to add some WiFi features in later revisions of his mask, so the ESP8266 is a no-brainer. Additionally, his controller board features three pushbuttons that allow him to toggle through different LED patterns on the fly.

Cool project [splat238]! Looking forward to the WiFi version.

Continue reading “A Face Mask That’s Functional And Hacker-Certified”

Quickly Mute And Unmute Yourself Using The Physical Mute Button

With many conferences moving to fully virtual this year, video conferencing will continue to be a mainstay in our lives for the foreseeable future. [Elliot] wanted to spice up his video conferencing experience just a bit and make his experience a bit more ergonomic. We’ve all had the problem of looking for our Zoom window buried behind any number of other applications, desperately searching for the mute button. Furthermore, when we get called on, we’re desperately trying to give the impression that we’ve been paying attention the entire time, even when we haven’t been.

To solve all these problems, he built a physical mute button to easily toggle the mute option on and off during Zoom calls. The device takes advantage of the native USB feature of his Digispark board, and a few built-in keyboard shortcuts in Zoom. With native USB, the Digispark board can act like a keyboard, making it really simple to emulate keyboard presses using the microcontroller. Throw in an arcade-style button and do a bit of handcrafting and you have yourself your own physical mute button.

We were really impressed by the simplicity of the design as well as the elegance of the mechanical assembly. [Elliot] even made a revamped version with a second button allowing him to control his video as well. Cool button(s) [Elliot]!

What’s your favorite work-from-home hack? Check out some of our favorites here on Hackaday.

Continue reading “Quickly Mute And Unmute Yourself Using The Physical Mute Button”

DIY Dongle Breathes Life Into Broken Ventilators

We have a new hero in the COVID-19 saga, and it’s some hacker in Poland. Whoever this person is, they are making bootleg dongles that let ventilator refurbishers circumvent lockdown software so they can repair broken ventilators bought from the secondhand market.

The dongle is a DIY copy of one that Medtronic makes, which of course they don’t sell to anyone. It makes a three-way connection between the patient’s monitor, a breath delivery system, and a computer, and lets technicians sync software between two broken machines so they can be Frankensteined into a single working ventilator. The company open-sourced an older model at the end of March, but this was widely viewed as a PR stunt.

This is not just the latest chapter in the right-to-repair saga. What began with locked-down tractors and phones has taken a serious turn as hospitals are filled to capacity with COVID-19 patients, many of whom will die without access to a ventilator. Not only is there a shortage of ventilators, but many of the companies that make them are refusing outside repair techs’ access to manuals and parts.

These companies insist that their own in-house technicians be the only ones who touch the machines, and many are not afraid to admit that they consider the ventilators to be their property long after the sale has been made. The ridiculousness of that aside, they don’t have the manpower to fix all the broken ventilators, and the people don’t have the time to wait on them.

We wish we could share the dongle schematic with our readers, but alas we do not have it. Hopefully it will show up on iFixit soon alongside all the ventilator manuals and schematics that have been compiled and centralized since the pandemic took off. In the meantime, you can take Ventilators 101 from our own [Bob Baddeley], and then find out what kind of engineering goes into them.

Detect COVID-19 Symptoms Using Wearable Device And AI

A new study from West Virginia University (WVU) Rockefeller Neuroscience Institute (RNI) uses a wearable device and artificial intelligence (AI) to predict COVID-19 up to 3 days before symptoms occur. The study has been an impressive undertaking involving over 1000 health care workers and frontline workers in hospitals across New York, Philadelphia, Nashville, and other critical COVID-19 hotspots.

The implementation of the digital health platform uses a custom smartphone application coupled with an Ōura smart ring to monitor biometric signals such as respiration and temperature. The platform also assesses psychological, cognitive, and behavioral data through surveys administered through a smartphone application.

We know that wearables tend to suffer from a lack of accuracy, particularly during activity. However, the Ōura ring appears to take measurements while the user is very still, especially during sleep. This presents an advantage as the accuracy of wearable devices greatly improves when the user isn’t moving. RNI noted that the Ōura ring has been the most accurate device they have tested.

Given some of the early warning signals for COVID-19 are fever and respiratory distress, it would make sense that a device able to measure respiration and temperature could be used as an early detector of COVID-19. In fact, we’ve seen a few wearable device companies attempt much of what RNI is doing as well as a few DIY attempts. RNI’s study has probably been the most thorough work released so far, but we’re sure that many more are upcoming.

The initial phase of the study was deployed among healthcare and frontline workers but is now open to the general public. Meanwhile the National Basketball Association (NBA) is coordinating its re-opening efforts using Ōura’s technology.

We hope to see more results emerge from RNI’s very important work. Until then, stay safe Hackaday.

Digi-Key Hacks UV Into Conveyor Line To Protect Warehouse Staff

No doubt that every hacker has already heard of Digi-Key, the electronic component distributor that makes it just as possible to order one of something as it is to order a thousand of it. As an essential business, Digi-Key has been open during the duration of the lockdown since they support critical manufacturing services for virtually every industry on the planet including the medical industry.

Ensuring their workforce stays healthy is key to remaining open and as part of their efforts they hacked together a nice addition to their sanitation regime. They use around 8,000 plastic totes to transport components around the distribution center and devised a way to sanitize tote coming in from the receiving area using a UV light tunnel. From their sanitation plan we can see this is in addition to the fogging system (likely a vaporized hydrogen peroxide system) used to regularly sanitize the totes passing throughout the warehouse.

They developed a UV light tunnel that wraps around the conveyor rollers. The design includes a sensor and a timer to control when and how long the UV lights are on. The totes are a frequent touch point for employees, and running incoming shipments through the UV light tunnel helps decrease the chance of exposure.

Thinking of using UV as a sanitation tool? Make sure you do your research on the wavelengths you need and vet the source of critical components. [Voja] ran into UV lamps that were anything but germicidal.

Defense Department Funds Wearables To Detect COVID-19

As many countries across the globe begin loosening their stay-at-home orders, we’re seeing government agencies and large companies prepare for the lasting effects of the pandemic. A recent solicitation from the United States Department of Defense (DoD) indicates they are investing $25 million into wearable devices that can detect early signs of COVID-19.

Based on a few details from the request for project proposals, it looks like the DoD is targeting mostly companies in this particular solicitation, but have left the door open for academic institutions as well. That makes intuitive sense. Companies can generally operate at a faster pace than most academic research labs. Given the urgency of the matter, faster turnarounds in technological development are imperative. Nonetheless, we have seen quite a bit of important COVID-19 work coming from academic research labs and we imagine that battling this pandemic will take all the brilliant minds we can muster together.

It’s good to see the DoD join the fight in what could be a lengthy battle with the coronavirus.

Please feel free to read through the request for project proposals for more details.

Checking In On Relatives Using Old Android Tablets

With social distancing it can be harder to stay in touch with our relatives, especially those who are elderly and not particularly tech-savvy. Looking for a solution to that end for his own grandmother, [Steve] came up with the idea of using an inexpensive used tablet and a mobile data plan in order to mail her a “video phone” that works out of the box.

This method requires zero button presses in order to pick up a video call.

Since the tablet is configured to use cellular networks rather than WiFi, it requires no setup process at all to the recipient. And with the Android version of Skype, it’s possible to configure it so that calls are automatically picked up and video chat enabled. That way, whoever gets the tablet after it’s prepared doesn’t have to tap a single button on the screen in order to receive a call.

[Steve] has also developed the simple idea into a full-fledged easy-to-follow tutorial so that just about anyone is able to replicate the process for their own loved ones. And if you’re still having any trouble with it, there’s a team of volunteers right on the website who can help you with tech support. Just remember to disinfect whatever device you’re sending, since viruses can typically stick to surfaces like plastic and glass for longer.

Now, if showing up to your relatives as a disembodied video screen doesn’t cut it for you, then you might want to send them something more substantial like this cute little telepresence robot that can drive around on a desk.